Loading…

Transcranial Magnetic Stimulation to the Transverse Occipital Sulcus Affects Scene but Not Object Processing

Traditionally, it has been theorized that the human visual system identifies and classifies scenes in an object-centered approach, such that scene recognition can only occur once key objects within a scene are identified. Recent research points toward an alternative approach, suggesting that the glo...

Full description

Saved in:
Bibliographic Details
Published in:Journal of cognitive neuroscience 2013-06, Vol.25 (6), p.961-968
Main Authors: Ganaden, Rachel E., Mullin, Caitlin R., Steeves, Jennifer K. E.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Traditionally, it has been theorized that the human visual system identifies and classifies scenes in an object-centered approach, such that scene recognition can only occur once key objects within a scene are identified. Recent research points toward an alternative approach, suggesting that the global image features of a scene are sufficient for the recognition and categorization of a scene. We have previously shown that disrupting object processing with repetitive TMS to object-selective cortex enhances scene processing possibly through a release of inhibitory mechanisms between object and scene pathways [Mullin, C. R., & Steeves, J. K. E. TMS to the lateral occipital cortex disrupts object processing but facilitates scene processing. 4174–4184, 2011]. Here we show the effects of TMS to the transverse occipital sulcus (TOS), an area implicated in scene perception, on scene and object processing. TMS was delivered to the TOS or the vertex (control site) while participants performed an object and scene natural/nonnatural categorization task. Transiently interrupting the TOS resulted in significantly lower accuracies for scene categorization compared with control conditions. This demonstrates a causal role of the TOS in scene processing and indicates its importance, in addition to the parahippocampal place area and retrosplenial cortex, in the scene processing network. Unlike TMS to object-selective cortex, which facilitates scene categorization, disrupting scene processing through stimulation of the TOS did not affect object categorization. Further analysis revealed a higher proportion of errors for nonnatural scenes that led us to speculate that the TOS may be involved in processing the higher spatial frequency content of a scene. This supports a nonhierarchical model of scene recognition.
ISSN:0898-929X
1530-8898
DOI:10.1162/jocn_a_00372