Loading…

Generalized Algorithm for Estimating Non-Commensurate Fractional-Order Models

The dynamics of real systems are often of fractional‐order but typically approximated using integer‐order models for simplicity. Due to the major improvements in the area of fractional‐order calculus during recent years, the fractional‐order methods may be used more efficiently thus providing more a...

Full description

Saved in:
Bibliographic Details
Published in:Asian journal of control 2013-05, Vol.15 (3), p.736-740
Main Authors: Taskinen, A., Roinila, T., Vilkko, M.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c3314-7ca76e553653d5592ff5ee8a5c7912b77e61863acffc0ea03cbe0fd1a0396a963
cites cdi_FETCH-LOGICAL-c3314-7ca76e553653d5592ff5ee8a5c7912b77e61863acffc0ea03cbe0fd1a0396a963
container_end_page 740
container_issue 3
container_start_page 736
container_title Asian journal of control
container_volume 15
creator Taskinen, A.
Roinila, T.
Vilkko, M.
description The dynamics of real systems are often of fractional‐order but typically approximated using integer‐order models for simplicity. Due to the major improvements in the area of fractional‐order calculus during recent years, the fractional‐order methods may be used more efficiently thus providing more accurate and realistic models. This paper presents an algorithm to estimate non‐commensurate fractional‐order models from frequency response data. Compared to the traditional method where only commensurate models are estimated, the presented technique provides more accurate models. The theory behind the method is shown and the results are illustrated by experimental measurements from a viscous elastic component, made from polydimethylsiloxane (PDMS), a silicon‐based organic polymer.
doi_str_mv 10.1002/asjc.624
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1349058982</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2963908581</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3314-7ca76e553653d5592ff5ee8a5c7912b77e61863acffc0ea03cbe0fd1a0396a963</originalsourceid><addsrcrecordid>eNp10F1LwzAUBuAgCs4p-BMK3njTmTRN2lyOMjvHPsQPvAxZejI722YmHTp_vR0TwQuvznvxcDjnReiS4AHBOLpRfq0HPIqPUI8IGoccC3rcZcZJmPKInaIz79cYc0JT1kOzHBpwqiq_oAiG1cq6sn2tA2NdMPJtWau2bFbB3DZhZusaGr91qoXg1indlrZRVbhwBbhgZguo_Dk6MarycPEz--j5dvSUjcPpIr_LhtNQU0riMNEq4cAY5YwWjInIGAaQKqYTQaJlkgAnKadKG6MxKEz1ErApSJcEV4LTPro67N04-74F38q13bruGi8JjQVmqUijTl0flHbWewdGblz3kdtJguW-LLkvS3ZldTQ80I-ygt2_Tg4fJ9kfX_oWPn-9cm-SJzRh8mWeyySf3I_T-YOM6DeW-Xqj</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1349058982</pqid></control><display><type>article</type><title>Generalized Algorithm for Estimating Non-Commensurate Fractional-Order Models</title><source>Wiley</source><creator>Taskinen, A. ; Roinila, T. ; Vilkko, M.</creator><creatorcontrib>Taskinen, A. ; Roinila, T. ; Vilkko, M.</creatorcontrib><description>The dynamics of real systems are often of fractional‐order but typically approximated using integer‐order models for simplicity. Due to the major improvements in the area of fractional‐order calculus during recent years, the fractional‐order methods may be used more efficiently thus providing more accurate and realistic models. This paper presents an algorithm to estimate non‐commensurate fractional‐order models from frequency response data. Compared to the traditional method where only commensurate models are estimated, the presented technique provides more accurate models. The theory behind the method is shown and the results are illustrated by experimental measurements from a viscous elastic component, made from polydimethylsiloxane (PDMS), a silicon‐based organic polymer.</description><identifier>ISSN: 1561-8625</identifier><identifier>EISSN: 1934-6093</identifier><identifier>DOI: 10.1002/asjc.624</identifier><language>eng</language><publisher>Hoboken: Blackwell Publishing Ltd</publisher><subject>Algorithms ; Approximation ; Dynamical systems ; Fractional dynamics ; frequency response ; Integer programming ; non-commensurate order ; Polymers</subject><ispartof>Asian journal of control, 2013-05, Vol.15 (3), p.736-740</ispartof><rights>2012 John Wiley and Sons Asia Pte Ltd and Chinese Automatic Control Society</rights><rights>2013 John Wiley and Sons Asia Pte Ltd and Chinese Automatic Control Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3314-7ca76e553653d5592ff5ee8a5c7912b77e61863acffc0ea03cbe0fd1a0396a963</citedby><cites>FETCH-LOGICAL-c3314-7ca76e553653d5592ff5ee8a5c7912b77e61863acffc0ea03cbe0fd1a0396a963</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Taskinen, A.</creatorcontrib><creatorcontrib>Roinila, T.</creatorcontrib><creatorcontrib>Vilkko, M.</creatorcontrib><title>Generalized Algorithm for Estimating Non-Commensurate Fractional-Order Models</title><title>Asian journal of control</title><addtitle>Asian J Control</addtitle><description>The dynamics of real systems are often of fractional‐order but typically approximated using integer‐order models for simplicity. Due to the major improvements in the area of fractional‐order calculus during recent years, the fractional‐order methods may be used more efficiently thus providing more accurate and realistic models. This paper presents an algorithm to estimate non‐commensurate fractional‐order models from frequency response data. Compared to the traditional method where only commensurate models are estimated, the presented technique provides more accurate models. The theory behind the method is shown and the results are illustrated by experimental measurements from a viscous elastic component, made from polydimethylsiloxane (PDMS), a silicon‐based organic polymer.</description><subject>Algorithms</subject><subject>Approximation</subject><subject>Dynamical systems</subject><subject>Fractional dynamics</subject><subject>frequency response</subject><subject>Integer programming</subject><subject>non-commensurate order</subject><subject>Polymers</subject><issn>1561-8625</issn><issn>1934-6093</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNp10F1LwzAUBuAgCs4p-BMK3njTmTRN2lyOMjvHPsQPvAxZejI722YmHTp_vR0TwQuvznvxcDjnReiS4AHBOLpRfq0HPIqPUI8IGoccC3rcZcZJmPKInaIz79cYc0JT1kOzHBpwqiq_oAiG1cq6sn2tA2NdMPJtWau2bFbB3DZhZusaGr91qoXg1indlrZRVbhwBbhgZguo_Dk6MarycPEz--j5dvSUjcPpIr_LhtNQU0riMNEq4cAY5YwWjInIGAaQKqYTQaJlkgAnKadKG6MxKEz1ErApSJcEV4LTPro67N04-74F38q13bruGi8JjQVmqUijTl0flHbWewdGblz3kdtJguW-LLkvS3ZldTQ80I-ygt2_Tg4fJ9kfX_oWPn-9cm-SJzRh8mWeyySf3I_T-YOM6DeW-Xqj</recordid><startdate>201305</startdate><enddate>201305</enddate><creator>Taskinen, A.</creator><creator>Roinila, T.</creator><creator>Vilkko, M.</creator><general>Blackwell Publishing Ltd</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope></search><sort><creationdate>201305</creationdate><title>Generalized Algorithm for Estimating Non-Commensurate Fractional-Order Models</title><author>Taskinen, A. ; Roinila, T. ; Vilkko, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3314-7ca76e553653d5592ff5ee8a5c7912b77e61863acffc0ea03cbe0fd1a0396a963</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Algorithms</topic><topic>Approximation</topic><topic>Dynamical systems</topic><topic>Fractional dynamics</topic><topic>frequency response</topic><topic>Integer programming</topic><topic>non-commensurate order</topic><topic>Polymers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Taskinen, A.</creatorcontrib><creatorcontrib>Roinila, T.</creatorcontrib><creatorcontrib>Vilkko, M.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><jtitle>Asian journal of control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Taskinen, A.</au><au>Roinila, T.</au><au>Vilkko, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Generalized Algorithm for Estimating Non-Commensurate Fractional-Order Models</atitle><jtitle>Asian journal of control</jtitle><addtitle>Asian J Control</addtitle><date>2013-05</date><risdate>2013</risdate><volume>15</volume><issue>3</issue><spage>736</spage><epage>740</epage><pages>736-740</pages><issn>1561-8625</issn><eissn>1934-6093</eissn><abstract>The dynamics of real systems are often of fractional‐order but typically approximated using integer‐order models for simplicity. Due to the major improvements in the area of fractional‐order calculus during recent years, the fractional‐order methods may be used more efficiently thus providing more accurate and realistic models. This paper presents an algorithm to estimate non‐commensurate fractional‐order models from frequency response data. Compared to the traditional method where only commensurate models are estimated, the presented technique provides more accurate models. The theory behind the method is shown and the results are illustrated by experimental measurements from a viscous elastic component, made from polydimethylsiloxane (PDMS), a silicon‐based organic polymer.</abstract><cop>Hoboken</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1002/asjc.624</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1561-8625
ispartof Asian journal of control, 2013-05, Vol.15 (3), p.736-740
issn 1561-8625
1934-6093
language eng
recordid cdi_proquest_journals_1349058982
source Wiley
subjects Algorithms
Approximation
Dynamical systems
Fractional dynamics
frequency response
Integer programming
non-commensurate order
Polymers
title Generalized Algorithm for Estimating Non-Commensurate Fractional-Order Models
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T04%3A39%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Generalized%20Algorithm%20for%20Estimating%20Non-Commensurate%20Fractional-Order%20Models&rft.jtitle=Asian%20journal%20of%20control&rft.au=Taskinen,%20A.&rft.date=2013-05&rft.volume=15&rft.issue=3&rft.spage=736&rft.epage=740&rft.pages=736-740&rft.issn=1561-8625&rft.eissn=1934-6093&rft_id=info:doi/10.1002/asjc.624&rft_dat=%3Cproquest_cross%3E2963908581%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3314-7ca76e553653d5592ff5ee8a5c7912b77e61863acffc0ea03cbe0fd1a0396a963%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1349058982&rft_id=info:pmid/&rfr_iscdi=true