Loading…
Generalized Algorithm for Estimating Non-Commensurate Fractional-Order Models
The dynamics of real systems are often of fractional‐order but typically approximated using integer‐order models for simplicity. Due to the major improvements in the area of fractional‐order calculus during recent years, the fractional‐order methods may be used more efficiently thus providing more a...
Saved in:
Published in: | Asian journal of control 2013-05, Vol.15 (3), p.736-740 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c3314-7ca76e553653d5592ff5ee8a5c7912b77e61863acffc0ea03cbe0fd1a0396a963 |
---|---|
cites | cdi_FETCH-LOGICAL-c3314-7ca76e553653d5592ff5ee8a5c7912b77e61863acffc0ea03cbe0fd1a0396a963 |
container_end_page | 740 |
container_issue | 3 |
container_start_page | 736 |
container_title | Asian journal of control |
container_volume | 15 |
creator | Taskinen, A. Roinila, T. Vilkko, M. |
description | The dynamics of real systems are often of fractional‐order but typically approximated using integer‐order models for simplicity. Due to the major improvements in the area of fractional‐order calculus during recent years, the fractional‐order methods may be used more efficiently thus providing more accurate and realistic models. This paper presents an algorithm to estimate non‐commensurate fractional‐order models from frequency response data. Compared to the traditional method where only commensurate models are estimated, the presented technique provides more accurate models. The theory behind the method is shown and the results are illustrated by experimental measurements from a viscous elastic component, made from polydimethylsiloxane (PDMS), a silicon‐based organic polymer. |
doi_str_mv | 10.1002/asjc.624 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1349058982</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2963908581</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3314-7ca76e553653d5592ff5ee8a5c7912b77e61863acffc0ea03cbe0fd1a0396a963</originalsourceid><addsrcrecordid>eNp10F1LwzAUBuAgCs4p-BMK3njTmTRN2lyOMjvHPsQPvAxZejI722YmHTp_vR0TwQuvznvxcDjnReiS4AHBOLpRfq0HPIqPUI8IGoccC3rcZcZJmPKInaIz79cYc0JT1kOzHBpwqiq_oAiG1cq6sn2tA2NdMPJtWau2bFbB3DZhZusaGr91qoXg1indlrZRVbhwBbhgZguo_Dk6MarycPEz--j5dvSUjcPpIr_LhtNQU0riMNEq4cAY5YwWjInIGAaQKqYTQaJlkgAnKadKG6MxKEz1ErApSJcEV4LTPro67N04-74F38q13bruGi8JjQVmqUijTl0flHbWewdGblz3kdtJguW-LLkvS3ZldTQ80I-ygt2_Tg4fJ9kfX_oWPn-9cm-SJzRh8mWeyySf3I_T-YOM6DeW-Xqj</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1349058982</pqid></control><display><type>article</type><title>Generalized Algorithm for Estimating Non-Commensurate Fractional-Order Models</title><source>Wiley</source><creator>Taskinen, A. ; Roinila, T. ; Vilkko, M.</creator><creatorcontrib>Taskinen, A. ; Roinila, T. ; Vilkko, M.</creatorcontrib><description>The dynamics of real systems are often of fractional‐order but typically approximated using integer‐order models for simplicity. Due to the major improvements in the area of fractional‐order calculus during recent years, the fractional‐order methods may be used more efficiently thus providing more accurate and realistic models. This paper presents an algorithm to estimate non‐commensurate fractional‐order models from frequency response data. Compared to the traditional method where only commensurate models are estimated, the presented technique provides more accurate models. The theory behind the method is shown and the results are illustrated by experimental measurements from a viscous elastic component, made from polydimethylsiloxane (PDMS), a silicon‐based organic polymer.</description><identifier>ISSN: 1561-8625</identifier><identifier>EISSN: 1934-6093</identifier><identifier>DOI: 10.1002/asjc.624</identifier><language>eng</language><publisher>Hoboken: Blackwell Publishing Ltd</publisher><subject>Algorithms ; Approximation ; Dynamical systems ; Fractional dynamics ; frequency response ; Integer programming ; non-commensurate order ; Polymers</subject><ispartof>Asian journal of control, 2013-05, Vol.15 (3), p.736-740</ispartof><rights>2012 John Wiley and Sons Asia Pte Ltd and Chinese Automatic Control Society</rights><rights>2013 John Wiley and Sons Asia Pte Ltd and Chinese Automatic Control Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3314-7ca76e553653d5592ff5ee8a5c7912b77e61863acffc0ea03cbe0fd1a0396a963</citedby><cites>FETCH-LOGICAL-c3314-7ca76e553653d5592ff5ee8a5c7912b77e61863acffc0ea03cbe0fd1a0396a963</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Taskinen, A.</creatorcontrib><creatorcontrib>Roinila, T.</creatorcontrib><creatorcontrib>Vilkko, M.</creatorcontrib><title>Generalized Algorithm for Estimating Non-Commensurate Fractional-Order Models</title><title>Asian journal of control</title><addtitle>Asian J Control</addtitle><description>The dynamics of real systems are often of fractional‐order but typically approximated using integer‐order models for simplicity. Due to the major improvements in the area of fractional‐order calculus during recent years, the fractional‐order methods may be used more efficiently thus providing more accurate and realistic models. This paper presents an algorithm to estimate non‐commensurate fractional‐order models from frequency response data. Compared to the traditional method where only commensurate models are estimated, the presented technique provides more accurate models. The theory behind the method is shown and the results are illustrated by experimental measurements from a viscous elastic component, made from polydimethylsiloxane (PDMS), a silicon‐based organic polymer.</description><subject>Algorithms</subject><subject>Approximation</subject><subject>Dynamical systems</subject><subject>Fractional dynamics</subject><subject>frequency response</subject><subject>Integer programming</subject><subject>non-commensurate order</subject><subject>Polymers</subject><issn>1561-8625</issn><issn>1934-6093</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNp10F1LwzAUBuAgCs4p-BMK3njTmTRN2lyOMjvHPsQPvAxZejI722YmHTp_vR0TwQuvznvxcDjnReiS4AHBOLpRfq0HPIqPUI8IGoccC3rcZcZJmPKInaIz79cYc0JT1kOzHBpwqiq_oAiG1cq6sn2tA2NdMPJtWau2bFbB3DZhZusaGr91qoXg1indlrZRVbhwBbhgZguo_Dk6MarycPEz--j5dvSUjcPpIr_LhtNQU0riMNEq4cAY5YwWjInIGAaQKqYTQaJlkgAnKadKG6MxKEz1ErApSJcEV4LTPro67N04-74F38q13bruGi8JjQVmqUijTl0flHbWewdGblz3kdtJguW-LLkvS3ZldTQ80I-ygt2_Tg4fJ9kfX_oWPn-9cm-SJzRh8mWeyySf3I_T-YOM6DeW-Xqj</recordid><startdate>201305</startdate><enddate>201305</enddate><creator>Taskinen, A.</creator><creator>Roinila, T.</creator><creator>Vilkko, M.</creator><general>Blackwell Publishing Ltd</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope></search><sort><creationdate>201305</creationdate><title>Generalized Algorithm for Estimating Non-Commensurate Fractional-Order Models</title><author>Taskinen, A. ; Roinila, T. ; Vilkko, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3314-7ca76e553653d5592ff5ee8a5c7912b77e61863acffc0ea03cbe0fd1a0396a963</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Algorithms</topic><topic>Approximation</topic><topic>Dynamical systems</topic><topic>Fractional dynamics</topic><topic>frequency response</topic><topic>Integer programming</topic><topic>non-commensurate order</topic><topic>Polymers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Taskinen, A.</creatorcontrib><creatorcontrib>Roinila, T.</creatorcontrib><creatorcontrib>Vilkko, M.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><jtitle>Asian journal of control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Taskinen, A.</au><au>Roinila, T.</au><au>Vilkko, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Generalized Algorithm for Estimating Non-Commensurate Fractional-Order Models</atitle><jtitle>Asian journal of control</jtitle><addtitle>Asian J Control</addtitle><date>2013-05</date><risdate>2013</risdate><volume>15</volume><issue>3</issue><spage>736</spage><epage>740</epage><pages>736-740</pages><issn>1561-8625</issn><eissn>1934-6093</eissn><abstract>The dynamics of real systems are often of fractional‐order but typically approximated using integer‐order models for simplicity. Due to the major improvements in the area of fractional‐order calculus during recent years, the fractional‐order methods may be used more efficiently thus providing more accurate and realistic models. This paper presents an algorithm to estimate non‐commensurate fractional‐order models from frequency response data. Compared to the traditional method where only commensurate models are estimated, the presented technique provides more accurate models. The theory behind the method is shown and the results are illustrated by experimental measurements from a viscous elastic component, made from polydimethylsiloxane (PDMS), a silicon‐based organic polymer.</abstract><cop>Hoboken</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1002/asjc.624</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1561-8625 |
ispartof | Asian journal of control, 2013-05, Vol.15 (3), p.736-740 |
issn | 1561-8625 1934-6093 |
language | eng |
recordid | cdi_proquest_journals_1349058982 |
source | Wiley |
subjects | Algorithms Approximation Dynamical systems Fractional dynamics frequency response Integer programming non-commensurate order Polymers |
title | Generalized Algorithm for Estimating Non-Commensurate Fractional-Order Models |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T04%3A39%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Generalized%20Algorithm%20for%20Estimating%20Non-Commensurate%20Fractional-Order%20Models&rft.jtitle=Asian%20journal%20of%20control&rft.au=Taskinen,%20A.&rft.date=2013-05&rft.volume=15&rft.issue=3&rft.spage=736&rft.epage=740&rft.pages=736-740&rft.issn=1561-8625&rft.eissn=1934-6093&rft_id=info:doi/10.1002/asjc.624&rft_dat=%3Cproquest_cross%3E2963908581%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3314-7ca76e553653d5592ff5ee8a5c7912b77e61863acffc0ea03cbe0fd1a0396a963%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1349058982&rft_id=info:pmid/&rfr_iscdi=true |