Loading…

Cone contraction and reference point methods for multi-criteria mixed integer optimization

•An interactive approach for a mixed integer multi-criteria optimization is introduced.•The DM makes pairwise comparisons of identified Pareto optimal points and gives reference points.•Assuming a quasi-concave value function pairwise comparisons are used to contract the cone of admissible objective...

Full description

Saved in:
Bibliographic Details
Published in:European journal of operational research 2013-09, Vol.229 (3), p.645-653
Main Authors: Kallio, Markku, Halme, Merja
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c359t-dc37f288a352e1dd363183246e12f9e861c75b10c48d0b9177880edc0f828f083
cites cdi_FETCH-LOGICAL-c359t-dc37f288a352e1dd363183246e12f9e861c75b10c48d0b9177880edc0f828f083
container_end_page 653
container_issue 3
container_start_page 645
container_title European journal of operational research
container_volume 229
creator Kallio, Markku
Halme, Merja
description •An interactive approach for a mixed integer multi-criteria optimization is introduced.•The DM makes pairwise comparisons of identified Pareto optimal points and gives reference points.•Assuming a quasi-concave value function pairwise comparisons are used to contract the cone of admissible objective vectors.•Numerical simulation tests indicate reasonably fast convergence.•Convergence is guaranteed for the pure integer case. Interactive approaches employing cone contraction for multi-criteria mixed integer optimization are introduced. In each iteration, the decision maker (DM) is asked to give a reference point (new aspiration levels). The subsequent Pareto optimal point is the reference point projected on the set of admissible objective vectors using a suitable scalarizing function. Thereby, the procedures solve a sequence of optimization problems with integer variables. In such a process, the DM provides additional preference information via pair-wise comparisons of Pareto optimal points identified. Using such preference information and assuming a quasiconcave and non-decreasing value function of the DM we restrict the set of admissible objective vectors by excluding subsets, which cannot improve over the solutions already found. The procedures terminate if all Pareto optimal solutions have been either generated or excluded. In this case, the best Pareto point found is an optimal solution. Such convergence is expected in the special case of pure integer optimization; indeed, numerical simulation tests with multi-criteria facility location models and knapsack problems indicate reasonably fast convergence, in particular, under a linear value function. We also propose a procedure to test whether or not a solution is a supported Pareto point (optimal under some linear value function).
doi_str_mv 10.1016/j.ejor.2013.03.006
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1350621585</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0377221713002142</els_id><sourcerecordid>2969532261</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-dc37f288a352e1dd363183246e12f9e861c75b10c48d0b9177880edc0f828f083</originalsourceid><addsrcrecordid>eNp9kM1LxDAQxYMouH78A54CnrvOJNs0C15k8QsWvOjFS-gmU03ZNjXJivrX27KehQdzee_NzI-xC4Q5Aqqrdk5tiHMBKOcwCtQBm6GuRKG0gkM2A1lVhRBYHbOTlFoAwBLLGXtdhZ64DX2Otc0-9LzuHY_UUKTeEh-C7zPvKL8Hl3gTIu922-wLG32m6Gve-S9yfDTRG0Uehuw7_1NPTWfsqKm3ic7_5il7ubt9Xj0U66f7x9XNurCyXObCWVk1QutaloLQOakkaikWilA0S9IKbVVuEOxCO9gssaq0BnIWGi10A1qesst97xDDx45SNm3YxX5caVCWoASWuhxdYu-yMaQ0PmiG6Ls6fhsEMzE0rZkYmomhgVGgxtD1PkTj_Z-eoknWT1ycj2SzccH_F_8Fv6V7Ag</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1350621585</pqid></control><display><type>article</type><title>Cone contraction and reference point methods for multi-criteria mixed integer optimization</title><source>ScienceDirect Freedom Collection 2022-2024</source><creator>Kallio, Markku ; Halme, Merja</creator><creatorcontrib>Kallio, Markku ; Halme, Merja</creatorcontrib><description>•An interactive approach for a mixed integer multi-criteria optimization is introduced.•The DM makes pairwise comparisons of identified Pareto optimal points and gives reference points.•Assuming a quasi-concave value function pairwise comparisons are used to contract the cone of admissible objective vectors.•Numerical simulation tests indicate reasonably fast convergence.•Convergence is guaranteed for the pure integer case. Interactive approaches employing cone contraction for multi-criteria mixed integer optimization are introduced. In each iteration, the decision maker (DM) is asked to give a reference point (new aspiration levels). The subsequent Pareto optimal point is the reference point projected on the set of admissible objective vectors using a suitable scalarizing function. Thereby, the procedures solve a sequence of optimization problems with integer variables. In such a process, the DM provides additional preference information via pair-wise comparisons of Pareto optimal points identified. Using such preference information and assuming a quasiconcave and non-decreasing value function of the DM we restrict the set of admissible objective vectors by excluding subsets, which cannot improve over the solutions already found. The procedures terminate if all Pareto optimal solutions have been either generated or excluded. In this case, the best Pareto point found is an optimal solution. Such convergence is expected in the special case of pure integer optimization; indeed, numerical simulation tests with multi-criteria facility location models and knapsack problems indicate reasonably fast convergence, in particular, under a linear value function. We also propose a procedure to test whether or not a solution is a supported Pareto point (optimal under some linear value function).</description><identifier>ISSN: 0377-2217</identifier><identifier>EISSN: 1872-6860</identifier><identifier>DOI: 10.1016/j.ejor.2013.03.006</identifier><identifier>CODEN: EJORDT</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Cone contraction ; Convergence ; Hierarchies ; Integer programming ; Mathematical problems ; Multi-criteria decision making ; Multi-criteria optimization ; Multiple criteria decision making ; Optimization ; Optimization techniques ; Pareto optimum ; Reference point method ; Studies</subject><ispartof>European journal of operational research, 2013-09, Vol.229 (3), p.645-653</ispartof><rights>2013 Elsevier B.V.</rights><rights>Copyright Elsevier Sequoia S.A. Sep 16, 2013</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c359t-dc37f288a352e1dd363183246e12f9e861c75b10c48d0b9177880edc0f828f083</citedby><cites>FETCH-LOGICAL-c359t-dc37f288a352e1dd363183246e12f9e861c75b10c48d0b9177880edc0f828f083</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Kallio, Markku</creatorcontrib><creatorcontrib>Halme, Merja</creatorcontrib><title>Cone contraction and reference point methods for multi-criteria mixed integer optimization</title><title>European journal of operational research</title><description>•An interactive approach for a mixed integer multi-criteria optimization is introduced.•The DM makes pairwise comparisons of identified Pareto optimal points and gives reference points.•Assuming a quasi-concave value function pairwise comparisons are used to contract the cone of admissible objective vectors.•Numerical simulation tests indicate reasonably fast convergence.•Convergence is guaranteed for the pure integer case. Interactive approaches employing cone contraction for multi-criteria mixed integer optimization are introduced. In each iteration, the decision maker (DM) is asked to give a reference point (new aspiration levels). The subsequent Pareto optimal point is the reference point projected on the set of admissible objective vectors using a suitable scalarizing function. Thereby, the procedures solve a sequence of optimization problems with integer variables. In such a process, the DM provides additional preference information via pair-wise comparisons of Pareto optimal points identified. Using such preference information and assuming a quasiconcave and non-decreasing value function of the DM we restrict the set of admissible objective vectors by excluding subsets, which cannot improve over the solutions already found. The procedures terminate if all Pareto optimal solutions have been either generated or excluded. In this case, the best Pareto point found is an optimal solution. Such convergence is expected in the special case of pure integer optimization; indeed, numerical simulation tests with multi-criteria facility location models and knapsack problems indicate reasonably fast convergence, in particular, under a linear value function. We also propose a procedure to test whether or not a solution is a supported Pareto point (optimal under some linear value function).</description><subject>Cone contraction</subject><subject>Convergence</subject><subject>Hierarchies</subject><subject>Integer programming</subject><subject>Mathematical problems</subject><subject>Multi-criteria decision making</subject><subject>Multi-criteria optimization</subject><subject>Multiple criteria decision making</subject><subject>Optimization</subject><subject>Optimization techniques</subject><subject>Pareto optimum</subject><subject>Reference point method</subject><subject>Studies</subject><issn>0377-2217</issn><issn>1872-6860</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNp9kM1LxDAQxYMouH78A54CnrvOJNs0C15k8QsWvOjFS-gmU03ZNjXJivrX27KehQdzee_NzI-xC4Q5Aqqrdk5tiHMBKOcwCtQBm6GuRKG0gkM2A1lVhRBYHbOTlFoAwBLLGXtdhZ64DX2Otc0-9LzuHY_UUKTeEh-C7zPvKL8Hl3gTIu922-wLG32m6Gve-S9yfDTRG0Uehuw7_1NPTWfsqKm3ic7_5il7ubt9Xj0U66f7x9XNurCyXObCWVk1QutaloLQOakkaikWilA0S9IKbVVuEOxCO9gssaq0BnIWGi10A1qesst97xDDx45SNm3YxX5caVCWoASWuhxdYu-yMaQ0PmiG6Ls6fhsEMzE0rZkYmomhgVGgxtD1PkTj_Z-eoknWT1ycj2SzccH_F_8Fv6V7Ag</recordid><startdate>20130916</startdate><enddate>20130916</enddate><creator>Kallio, Markku</creator><creator>Halme, Merja</creator><general>Elsevier B.V</general><general>Elsevier Sequoia S.A</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20130916</creationdate><title>Cone contraction and reference point methods for multi-criteria mixed integer optimization</title><author>Kallio, Markku ; Halme, Merja</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-dc37f288a352e1dd363183246e12f9e861c75b10c48d0b9177880edc0f828f083</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Cone contraction</topic><topic>Convergence</topic><topic>Hierarchies</topic><topic>Integer programming</topic><topic>Mathematical problems</topic><topic>Multi-criteria decision making</topic><topic>Multi-criteria optimization</topic><topic>Multiple criteria decision making</topic><topic>Optimization</topic><topic>Optimization techniques</topic><topic>Pareto optimum</topic><topic>Reference point method</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kallio, Markku</creatorcontrib><creatorcontrib>Halme, Merja</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>European journal of operational research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kallio, Markku</au><au>Halme, Merja</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cone contraction and reference point methods for multi-criteria mixed integer optimization</atitle><jtitle>European journal of operational research</jtitle><date>2013-09-16</date><risdate>2013</risdate><volume>229</volume><issue>3</issue><spage>645</spage><epage>653</epage><pages>645-653</pages><issn>0377-2217</issn><eissn>1872-6860</eissn><coden>EJORDT</coden><abstract>•An interactive approach for a mixed integer multi-criteria optimization is introduced.•The DM makes pairwise comparisons of identified Pareto optimal points and gives reference points.•Assuming a quasi-concave value function pairwise comparisons are used to contract the cone of admissible objective vectors.•Numerical simulation tests indicate reasonably fast convergence.•Convergence is guaranteed for the pure integer case. Interactive approaches employing cone contraction for multi-criteria mixed integer optimization are introduced. In each iteration, the decision maker (DM) is asked to give a reference point (new aspiration levels). The subsequent Pareto optimal point is the reference point projected on the set of admissible objective vectors using a suitable scalarizing function. Thereby, the procedures solve a sequence of optimization problems with integer variables. In such a process, the DM provides additional preference information via pair-wise comparisons of Pareto optimal points identified. Using such preference information and assuming a quasiconcave and non-decreasing value function of the DM we restrict the set of admissible objective vectors by excluding subsets, which cannot improve over the solutions already found. The procedures terminate if all Pareto optimal solutions have been either generated or excluded. In this case, the best Pareto point found is an optimal solution. Such convergence is expected in the special case of pure integer optimization; indeed, numerical simulation tests with multi-criteria facility location models and knapsack problems indicate reasonably fast convergence, in particular, under a linear value function. We also propose a procedure to test whether or not a solution is a supported Pareto point (optimal under some linear value function).</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.ejor.2013.03.006</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0377-2217
ispartof European journal of operational research, 2013-09, Vol.229 (3), p.645-653
issn 0377-2217
1872-6860
language eng
recordid cdi_proquest_journals_1350621585
source ScienceDirect Freedom Collection 2022-2024
subjects Cone contraction
Convergence
Hierarchies
Integer programming
Mathematical problems
Multi-criteria decision making
Multi-criteria optimization
Multiple criteria decision making
Optimization
Optimization techniques
Pareto optimum
Reference point method
Studies
title Cone contraction and reference point methods for multi-criteria mixed integer optimization
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T15%3A24%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cone%20contraction%20and%20reference%20point%20methods%20for%20multi-criteria%20mixed%20integer%20optimization&rft.jtitle=European%20journal%20of%20operational%20research&rft.au=Kallio,%20Markku&rft.date=2013-09-16&rft.volume=229&rft.issue=3&rft.spage=645&rft.epage=653&rft.pages=645-653&rft.issn=0377-2217&rft.eissn=1872-6860&rft.coden=EJORDT&rft_id=info:doi/10.1016/j.ejor.2013.03.006&rft_dat=%3Cproquest_cross%3E2969532261%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c359t-dc37f288a352e1dd363183246e12f9e861c75b10c48d0b9177880edc0f828f083%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1350621585&rft_id=info:pmid/&rfr_iscdi=true