Loading…

Spatial variations of groundwater vulnerability using cluster analysis

An investigation on quality of groundwater has been carried out in the river basin of Varaha located in Visakhapatnam District, Andhra Pradesh to find out the factors that are responsible for spatial variations of water vulnerability. The study area is underlain by the Precambrian rocks of Eastern G...

Full description

Saved in:
Bibliographic Details
Published in:Journal of the Geological Society of India 2013-05, Vol.81 (5), p.685-697
Main Authors: Subba Rao, N., Surya Rao, P., Deva Varma, D.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:An investigation on quality of groundwater has been carried out in the river basin of Varaha located in Visakhapatnam District, Andhra Pradesh to find out the factors that are responsible for spatial variations of water vulnerability. The study area is underlain by the Precambrian rocks of Eastern Ghats over which the Recent Formations occur. Groundwater is a prime source for drinking and irrigation. The quality of groundwater is fresh and brackish with dominance of the latter. Groundwater samples are categorized into two major clusters A and B, using the dendrogram of cluster analyses. Out of these two major clusters, five sub-clusters I to V in the pre-monsoon season and six sub-clusters I to VI in the post-monsoon season are identified. The sub-clusters I to IV of pre-monsoon and I to V of post-monsoon seasons of the cluster A are characterized by less mineralized groundwater compared to those of V of pre-monsoon and VI of post-monsoon seasons of the cluster B, which represent highly mineralized groundwater. The low to high mineral content follows gradually from upstream to the downstream area, being higher in post-monsoon season in both the clusters A and B, depending upon the source, mineral dissolution, and precipitation, solubility and leaching of ions, ion exchange and adsorption processes. Spatial distributions of the sub-clusters give clues to understand the factors that cause variations of groundwater vulnerability at a specific site, vis-a-vis local and regional lithological and non-lithological influences. As a result, the quality of groundwater on a regional scale changes from Na + > Mg 2+ >Ca 2+ > K + : HCO 3 − > Cl − > SO 4 2− > NO 3 − > F − in the cluster A to Na + > Mg 2+ >Ca 2+ > K + : Cl − > HCO 3 − > SO 4 2− > NO 3 − > F − in the cluster B, following the topography. The classification of the area into the zones of relative groundwater vulnerability with respect to drinking water quality of the chemical composition of the sub-clusters helps the planners to identify the specific locations, where the inferior quality of groundwater can occur, for taking the remedial measures.
ISSN:0016-7622
0974-6889
DOI:10.1007/s12594-013-0090-y