Loading…

Production and ionization energies of KnF (n = 2-6) clusters by thermal ionization mass spectrometry

RATIONALE The very small clusters of the type KnF are of particular importance since their first ionization energies (IEs) are lower than those of the alkali metal atoms. Theoretical calculation has demonstrated that this kind of cluster represents a potential 'building block' for cluster‐...

Full description

Saved in:
Bibliographic Details
Published in:Rapid communications in mass spectrometry 2012-08, Vol.26 (16), p.1761-1766
Main Authors: Veljković, F. M., Djustebek, J. B., Veljković, M. V., Veličković, S. R., Perić-Grujić, A. A.
Format: Article
Language:English
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 1766
container_issue 16
container_start_page 1761
container_title Rapid communications in mass spectrometry
container_volume 26
creator Veljković, F. M.
Djustebek, J. B.
Veljković, M. V.
Veličković, S. R.
Perić-Grujić, A. A.
description RATIONALE The very small clusters of the type KnF are of particular importance since their first ionization energies (IEs) are lower than those of the alkali metal atoms. Theoretical calculation has demonstrated that this kind of cluster represents a potential 'building block' for cluster‐assembly materials with unique structural, electronic, optical, magnetic, and thermodynamic properties. To date, however, there have been no experimental results on the IEs of KnF (n >2) clusters. METHOD KnF (n = 2–6) clusters were produced by the evaporation of a solid potassium fluoride salt using a modified thermal ionization source of modified design, and mass selected by a magnetic sector mass spectrometer where their IEs were determined. RESULTS Clusters KnF (n = 3–6) were detected for the first time. The order of the ion intensities was K2F+> > K4F+> > K3F+K6F+ > K5F+. The determined IEs were 3.99 ± 0.20 eV for K2F, 4.16 ± 0.20 eV for K3F, 4.27 ± 0.20 eV for K4F, 4.22 ± 0.20 eV for K5F, and 4.31 ± 0.20 eV for K6F. The IEs of KnF increase slightly with the increase in potassium atom number from 2 to 6. We also observed that the presence of a fluorine atom leads to increasing ionization energy of bare metal potassium clusters. CONCLUSIONS The modified thermal ionization source provides an efficient way of obtaining the fluorine‐doped potassium clusters. These results also present experimental proof that KnF (n = 2–6) clusters belong to the group of 'superalkali' species. Copyright © 2012 John Wiley & Sons, Ltd.
doi_str_mv 10.1002/rcm.6284
format article
fullrecord <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_journals_1355412755</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2979944361</sourcerecordid><originalsourceid>FETCH-LOGICAL-i2594-b1b18fc8a38cbd856126da5371a521fc136fc60d69febcd9e79b6af9eb374cd13</originalsourceid><addsrcrecordid>eNpNkLFOwzAQhi0EEqUg8QiWWGBI8dmxkwwMqKItoi0IAR0tx3FoSpMUOxGEiZXX5ElIKQKG06-TvrvTfQgdAukBIfTU6rwnaOhvoQ6QKPAIZbCNOiTi4PkQhbtoz7kFIQCckg6a39gyqXWVlQVWRYLbzN7Ud2sKYx8z43CZ4qtigI-Lz_ePs7aoJ06wXtauMtbhuMHV3NhcLf8P58o57FZGV7bMTWWbfbSTqqUzBz_ZRfeDi7v-yBtfDy_752MvozzyvRhiCFMdKhbqOAm5ACoSxVkAilNINTCRakESEaUm1klkgigWKo1MzAJfJ8C66Gizd2XL59q4Si7K2hbtSQmMcx9owHlLeRvqJVuaRq5slivbSCByLVG2EuVaorztT9b5x2ft06-_vLJPUgQs4HI2HcqZD-PJwyiUU_YFNbt4Uw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1355412755</pqid></control><display><type>article</type><title>Production and ionization energies of KnF (n = 2-6) clusters by thermal ionization mass spectrometry</title><source>Wiley</source><creator>Veljković, F. M. ; Djustebek, J. B. ; Veljković, M. V. ; Veličković, S. R. ; Perić-Grujić, A. A.</creator><creatorcontrib>Veljković, F. M. ; Djustebek, J. B. ; Veljković, M. V. ; Veličković, S. R. ; Perić-Grujić, A. A.</creatorcontrib><description>RATIONALE The very small clusters of the type KnF are of particular importance since their first ionization energies (IEs) are lower than those of the alkali metal atoms. Theoretical calculation has demonstrated that this kind of cluster represents a potential 'building block' for cluster‐assembly materials with unique structural, electronic, optical, magnetic, and thermodynamic properties. To date, however, there have been no experimental results on the IEs of KnF (n &gt;2) clusters. METHOD KnF (n = 2–6) clusters were produced by the evaporation of a solid potassium fluoride salt using a modified thermal ionization source of modified design, and mass selected by a magnetic sector mass spectrometer where their IEs were determined. RESULTS Clusters KnF (n = 3–6) were detected for the first time. The order of the ion intensities was K2F+&gt; &gt; K4F+&gt; &gt; K3F+K6F+ &gt; K5F+. The determined IEs were 3.99 ± 0.20 eV for K2F, 4.16 ± 0.20 eV for K3F, 4.27 ± 0.20 eV for K4F, 4.22 ± 0.20 eV for K5F, and 4.31 ± 0.20 eV for K6F. The IEs of KnF increase slightly with the increase in potassium atom number from 2 to 6. We also observed that the presence of a fluorine atom leads to increasing ionization energy of bare metal potassium clusters. CONCLUSIONS The modified thermal ionization source provides an efficient way of obtaining the fluorine‐doped potassium clusters. These results also present experimental proof that KnF (n = 2–6) clusters belong to the group of 'superalkali' species. Copyright © 2012 John Wiley &amp; Sons, Ltd.</description><identifier>ISSN: 0951-4198</identifier><identifier>EISSN: 1097-0231</identifier><identifier>DOI: 10.1002/rcm.6284</identifier><language>eng</language><publisher>Bognor Regis: Blackwell Publishing Ltd</publisher><ispartof>Rapid communications in mass spectrometry, 2012-08, Vol.26 (16), p.1761-1766</ispartof><rights>Copyright © 2012 John Wiley &amp; Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Veljković, F. M.</creatorcontrib><creatorcontrib>Djustebek, J. B.</creatorcontrib><creatorcontrib>Veljković, M. V.</creatorcontrib><creatorcontrib>Veličković, S. R.</creatorcontrib><creatorcontrib>Perić-Grujić, A. A.</creatorcontrib><title>Production and ionization energies of KnF (n = 2-6) clusters by thermal ionization mass spectrometry</title><title>Rapid communications in mass spectrometry</title><addtitle>Rapid Commun. Mass Spectrom</addtitle><description>RATIONALE The very small clusters of the type KnF are of particular importance since their first ionization energies (IEs) are lower than those of the alkali metal atoms. Theoretical calculation has demonstrated that this kind of cluster represents a potential 'building block' for cluster‐assembly materials with unique structural, electronic, optical, magnetic, and thermodynamic properties. To date, however, there have been no experimental results on the IEs of KnF (n &gt;2) clusters. METHOD KnF (n = 2–6) clusters were produced by the evaporation of a solid potassium fluoride salt using a modified thermal ionization source of modified design, and mass selected by a magnetic sector mass spectrometer where their IEs were determined. RESULTS Clusters KnF (n = 3–6) were detected for the first time. The order of the ion intensities was K2F+&gt; &gt; K4F+&gt; &gt; K3F+K6F+ &gt; K5F+. The determined IEs were 3.99 ± 0.20 eV for K2F, 4.16 ± 0.20 eV for K3F, 4.27 ± 0.20 eV for K4F, 4.22 ± 0.20 eV for K5F, and 4.31 ± 0.20 eV for K6F. The IEs of KnF increase slightly with the increase in potassium atom number from 2 to 6. We also observed that the presence of a fluorine atom leads to increasing ionization energy of bare metal potassium clusters. CONCLUSIONS The modified thermal ionization source provides an efficient way of obtaining the fluorine‐doped potassium clusters. These results also present experimental proof that KnF (n = 2–6) clusters belong to the group of 'superalkali' species. Copyright © 2012 John Wiley &amp; Sons, Ltd.</description><issn>0951-4198</issn><issn>1097-0231</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNpNkLFOwzAQhi0EEqUg8QiWWGBI8dmxkwwMqKItoi0IAR0tx3FoSpMUOxGEiZXX5ElIKQKG06-TvrvTfQgdAukBIfTU6rwnaOhvoQ6QKPAIZbCNOiTi4PkQhbtoz7kFIQCckg6a39gyqXWVlQVWRYLbzN7Ud2sKYx8z43CZ4qtigI-Lz_ePs7aoJ06wXtauMtbhuMHV3NhcLf8P58o57FZGV7bMTWWbfbSTqqUzBz_ZRfeDi7v-yBtfDy_752MvozzyvRhiCFMdKhbqOAm5ACoSxVkAilNINTCRakESEaUm1klkgigWKo1MzAJfJ8C66Gizd2XL59q4Si7K2hbtSQmMcx9owHlLeRvqJVuaRq5slivbSCByLVG2EuVaorztT9b5x2ft06-_vLJPUgQs4HI2HcqZD-PJwyiUU_YFNbt4Uw</recordid><startdate>20120830</startdate><enddate>20120830</enddate><creator>Veljković, F. M.</creator><creator>Djustebek, J. B.</creator><creator>Veljković, M. V.</creator><creator>Veličković, S. R.</creator><creator>Perić-Grujić, A. A.</creator><general>Blackwell Publishing Ltd</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope></search><sort><creationdate>20120830</creationdate><title>Production and ionization energies of KnF (n = 2-6) clusters by thermal ionization mass spectrometry</title><author>Veljković, F. M. ; Djustebek, J. B. ; Veljković, M. V. ; Veličković, S. R. ; Perić-Grujić, A. A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i2594-b1b18fc8a38cbd856126da5371a521fc136fc60d69febcd9e79b6af9eb374cd13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Veljković, F. M.</creatorcontrib><creatorcontrib>Djustebek, J. B.</creatorcontrib><creatorcontrib>Veljković, M. V.</creatorcontrib><creatorcontrib>Veličković, S. R.</creatorcontrib><creatorcontrib>Perić-Grujić, A. A.</creatorcontrib><collection>Istex</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Rapid communications in mass spectrometry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Veljković, F. M.</au><au>Djustebek, J. B.</au><au>Veljković, M. V.</au><au>Veličković, S. R.</au><au>Perić-Grujić, A. A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Production and ionization energies of KnF (n = 2-6) clusters by thermal ionization mass spectrometry</atitle><jtitle>Rapid communications in mass spectrometry</jtitle><addtitle>Rapid Commun. Mass Spectrom</addtitle><date>2012-08-30</date><risdate>2012</risdate><volume>26</volume><issue>16</issue><spage>1761</spage><epage>1766</epage><pages>1761-1766</pages><issn>0951-4198</issn><eissn>1097-0231</eissn><abstract>RATIONALE The very small clusters of the type KnF are of particular importance since their first ionization energies (IEs) are lower than those of the alkali metal atoms. Theoretical calculation has demonstrated that this kind of cluster represents a potential 'building block' for cluster‐assembly materials with unique structural, electronic, optical, magnetic, and thermodynamic properties. To date, however, there have been no experimental results on the IEs of KnF (n &gt;2) clusters. METHOD KnF (n = 2–6) clusters were produced by the evaporation of a solid potassium fluoride salt using a modified thermal ionization source of modified design, and mass selected by a magnetic sector mass spectrometer where their IEs were determined. RESULTS Clusters KnF (n = 3–6) were detected for the first time. The order of the ion intensities was K2F+&gt; &gt; K4F+&gt; &gt; K3F+K6F+ &gt; K5F+. The determined IEs were 3.99 ± 0.20 eV for K2F, 4.16 ± 0.20 eV for K3F, 4.27 ± 0.20 eV for K4F, 4.22 ± 0.20 eV for K5F, and 4.31 ± 0.20 eV for K6F. The IEs of KnF increase slightly with the increase in potassium atom number from 2 to 6. We also observed that the presence of a fluorine atom leads to increasing ionization energy of bare metal potassium clusters. CONCLUSIONS The modified thermal ionization source provides an efficient way of obtaining the fluorine‐doped potassium clusters. These results also present experimental proof that KnF (n = 2–6) clusters belong to the group of 'superalkali' species. Copyright © 2012 John Wiley &amp; Sons, Ltd.</abstract><cop>Bognor Regis</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1002/rcm.6284</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0951-4198
ispartof Rapid communications in mass spectrometry, 2012-08, Vol.26 (16), p.1761-1766
issn 0951-4198
1097-0231
language eng
recordid cdi_proquest_journals_1355412755
source Wiley
title Production and ionization energies of KnF (n = 2-6) clusters by thermal ionization mass spectrometry
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T11%3A05%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Production%20and%20ionization%20energies%20of%20KnF%20(n%E2%80%89=%E2%80%892-6)%20clusters%20by%20thermal%20ionization%20mass%20spectrometry&rft.jtitle=Rapid%20communications%20in%20mass%20spectrometry&rft.au=Veljkovi%C4%87,%20F.%20M.&rft.date=2012-08-30&rft.volume=26&rft.issue=16&rft.spage=1761&rft.epage=1766&rft.pages=1761-1766&rft.issn=0951-4198&rft.eissn=1097-0231&rft_id=info:doi/10.1002/rcm.6284&rft_dat=%3Cproquest_wiley%3E2979944361%3C/proquest_wiley%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i2594-b1b18fc8a38cbd856126da5371a521fc136fc60d69febcd9e79b6af9eb374cd13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1355412755&rft_id=info:pmid/&rfr_iscdi=true