Loading…

Outlier separability analysis with a multiple alternative hypotheses test

Outlier separability analysis is a fundamental component of modern geodetic measurement analysis, positioning, navigation, and many other applications. The current theory of outlier separability is based on using two alternative hypotheses—an assumption that may not necessarily be valid. In this pap...

Full description

Saved in:
Bibliographic Details
Published in:Journal of geodesy 2013-06, Vol.87 (6), p.591-604
Main Authors: Yang, Ling, Wang, Jinling, Knight, Nathan L., Shen, Yunzhong
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c316t-9238b7f21e4bee0861d97d1afca9d260284e199224a0abbecc80cebecc93970e3
cites cdi_FETCH-LOGICAL-c316t-9238b7f21e4bee0861d97d1afca9d260284e199224a0abbecc80cebecc93970e3
container_end_page 604
container_issue 6
container_start_page 591
container_title Journal of geodesy
container_volume 87
creator Yang, Ling
Wang, Jinling
Knight, Nathan L.
Shen, Yunzhong
description Outlier separability analysis is a fundamental component of modern geodetic measurement analysis, positioning, navigation, and many other applications. The current theory of outlier separability is based on using two alternative hypotheses—an assumption that may not necessarily be valid. In this paper, the current theory of outlier separability is statistically analysed and then extended to the general case, where there are multiple alternative hypotheses. Taking into consideration the complexity of the critical region and the probability density function of the outlier test, the bounds of the associated statistical decision probabilities are then developed. With this theory, the probabilities of committing type I, II, and III errors can be controlled so that the probability of successful identification of an outlier can be guaranteed when performing data snooping. The theoretical findings are then demonstrated using a simulated GPS point positioning example. Detailed analysis shows that the larger the correlation coefficient, between the outlier statistics, the smaller the probability of committing a type II error and the greater the probability of committing a type III error. When the correlation coefficient is greater than 0.8, there is a far greater chance of committing a type III error than committing a type II error. In addition, to guarantee successful identification of an outlier with a set probability, the minimal detectable size of the outlier (often called the Minimal Detectable Bias or MDB) should dramatically increase with the correlation coefficient.
doi_str_mv 10.1007/s00190-013-0629-0
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1357146276</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2984504291</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-9238b7f21e4bee0861d97d1afca9d260284e199224a0abbecc80cebecc93970e3</originalsourceid><addsrcrecordid>eNp1kD1PwzAQhi0EEqXwA9gsMRvOdhrHI6r4qFSpC8yWk16oK7cJtgPKv8dVGFiYbnne9-4eQm453HMA9RABuAYGXDIohWZwRma8kIJxqYtzMgNdaKYULy7JVYz7TKtFVc7IajMk7zDQiL0NtnbepZHao_VjdJF-u7Sjlh4Gn1zvkVqfMBxtcl9Id2PfpR1GjDRhTNfkorU-4s3vnJP356e35Stbb15Wy8c1ayQvE9NCVrVqBceiRoSq5Futtty2jdVbUYKoCuRaC1FYsHWNTVNBg6eppVaAck7upt4-dJ9DXmz23ZBv8tFwucgflkKVmeIT1YQuxoCt6YM72DAaDuZkzEzGTDZmTsYM5IyYMjGzxw8Mf5r_Df0A51pvdw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1357146276</pqid></control><display><type>article</type><title>Outlier separability analysis with a multiple alternative hypotheses test</title><source>Springer Nature</source><creator>Yang, Ling ; Wang, Jinling ; Knight, Nathan L. ; Shen, Yunzhong</creator><creatorcontrib>Yang, Ling ; Wang, Jinling ; Knight, Nathan L. ; Shen, Yunzhong</creatorcontrib><description>Outlier separability analysis is a fundamental component of modern geodetic measurement analysis, positioning, navigation, and many other applications. The current theory of outlier separability is based on using two alternative hypotheses—an assumption that may not necessarily be valid. In this paper, the current theory of outlier separability is statistically analysed and then extended to the general case, where there are multiple alternative hypotheses. Taking into consideration the complexity of the critical region and the probability density function of the outlier test, the bounds of the associated statistical decision probabilities are then developed. With this theory, the probabilities of committing type I, II, and III errors can be controlled so that the probability of successful identification of an outlier can be guaranteed when performing data snooping. The theoretical findings are then demonstrated using a simulated GPS point positioning example. Detailed analysis shows that the larger the correlation coefficient, between the outlier statistics, the smaller the probability of committing a type II error and the greater the probability of committing a type III error. When the correlation coefficient is greater than 0.8, there is a far greater chance of committing a type III error than committing a type II error. In addition, to guarantee successful identification of an outlier with a set probability, the minimal detectable size of the outlier (often called the Minimal Detectable Bias or MDB) should dramatically increase with the correlation coefficient.</description><identifier>ISSN: 0949-7714</identifier><identifier>EISSN: 1432-1394</identifier><identifier>DOI: 10.1007/s00190-013-0629-0</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer-Verlag</publisher><subject>Correlation coefficient ; Earth and Environmental Science ; Earth Sciences ; Geodetic surveys ; Geodetics ; Geophysics/Geodesy ; Global positioning systems ; GPS ; Hypothesis testing ; Review Paper</subject><ispartof>Journal of geodesy, 2013-06, Vol.87 (6), p.591-604</ispartof><rights>Springer-Verlag Berlin Heidelberg 2013</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-9238b7f21e4bee0861d97d1afca9d260284e199224a0abbecc80cebecc93970e3</citedby><cites>FETCH-LOGICAL-c316t-9238b7f21e4bee0861d97d1afca9d260284e199224a0abbecc80cebecc93970e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Yang, Ling</creatorcontrib><creatorcontrib>Wang, Jinling</creatorcontrib><creatorcontrib>Knight, Nathan L.</creatorcontrib><creatorcontrib>Shen, Yunzhong</creatorcontrib><title>Outlier separability analysis with a multiple alternative hypotheses test</title><title>Journal of geodesy</title><addtitle>J Geod</addtitle><description>Outlier separability analysis is a fundamental component of modern geodetic measurement analysis, positioning, navigation, and many other applications. The current theory of outlier separability is based on using two alternative hypotheses—an assumption that may not necessarily be valid. In this paper, the current theory of outlier separability is statistically analysed and then extended to the general case, where there are multiple alternative hypotheses. Taking into consideration the complexity of the critical region and the probability density function of the outlier test, the bounds of the associated statistical decision probabilities are then developed. With this theory, the probabilities of committing type I, II, and III errors can be controlled so that the probability of successful identification of an outlier can be guaranteed when performing data snooping. The theoretical findings are then demonstrated using a simulated GPS point positioning example. Detailed analysis shows that the larger the correlation coefficient, between the outlier statistics, the smaller the probability of committing a type II error and the greater the probability of committing a type III error. When the correlation coefficient is greater than 0.8, there is a far greater chance of committing a type III error than committing a type II error. In addition, to guarantee successful identification of an outlier with a set probability, the minimal detectable size of the outlier (often called the Minimal Detectable Bias or MDB) should dramatically increase with the correlation coefficient.</description><subject>Correlation coefficient</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Geodetic surveys</subject><subject>Geodetics</subject><subject>Geophysics/Geodesy</subject><subject>Global positioning systems</subject><subject>GPS</subject><subject>Hypothesis testing</subject><subject>Review Paper</subject><issn>0949-7714</issn><issn>1432-1394</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNp1kD1PwzAQhi0EEqXwA9gsMRvOdhrHI6r4qFSpC8yWk16oK7cJtgPKv8dVGFiYbnne9-4eQm453HMA9RABuAYGXDIohWZwRma8kIJxqYtzMgNdaKYULy7JVYz7TKtFVc7IajMk7zDQiL0NtnbepZHao_VjdJF-u7Sjlh4Gn1zvkVqfMBxtcl9Id2PfpR1GjDRhTNfkorU-4s3vnJP356e35Stbb15Wy8c1ayQvE9NCVrVqBceiRoSq5Futtty2jdVbUYKoCuRaC1FYsHWNTVNBg6eppVaAck7upt4-dJ9DXmz23ZBv8tFwucgflkKVmeIT1YQuxoCt6YM72DAaDuZkzEzGTDZmTsYM5IyYMjGzxw8Mf5r_Df0A51pvdw</recordid><startdate>20130601</startdate><enddate>20130601</enddate><creator>Yang, Ling</creator><creator>Wang, Jinling</creator><creator>Knight, Nathan L.</creator><creator>Shen, Yunzhong</creator><general>Springer-Verlag</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TG</scope><scope>7TN</scope><scope>7XB</scope><scope>88I</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>M2P</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope></search><sort><creationdate>20130601</creationdate><title>Outlier separability analysis with a multiple alternative hypotheses test</title><author>Yang, Ling ; Wang, Jinling ; Knight, Nathan L. ; Shen, Yunzhong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-9238b7f21e4bee0861d97d1afca9d260284e199224a0abbecc80cebecc93970e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Correlation coefficient</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Geodetic surveys</topic><topic>Geodetics</topic><topic>Geophysics/Geodesy</topic><topic>Global positioning systems</topic><topic>GPS</topic><topic>Hypothesis testing</topic><topic>Review Paper</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Ling</creatorcontrib><creatorcontrib>Wang, Jinling</creatorcontrib><creatorcontrib>Knight, Nathan L.</creatorcontrib><creatorcontrib>Shen, Yunzhong</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Journal of geodesy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Ling</au><au>Wang, Jinling</au><au>Knight, Nathan L.</au><au>Shen, Yunzhong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Outlier separability analysis with a multiple alternative hypotheses test</atitle><jtitle>Journal of geodesy</jtitle><stitle>J Geod</stitle><date>2013-06-01</date><risdate>2013</risdate><volume>87</volume><issue>6</issue><spage>591</spage><epage>604</epage><pages>591-604</pages><issn>0949-7714</issn><eissn>1432-1394</eissn><abstract>Outlier separability analysis is a fundamental component of modern geodetic measurement analysis, positioning, navigation, and many other applications. The current theory of outlier separability is based on using two alternative hypotheses—an assumption that may not necessarily be valid. In this paper, the current theory of outlier separability is statistically analysed and then extended to the general case, where there are multiple alternative hypotheses. Taking into consideration the complexity of the critical region and the probability density function of the outlier test, the bounds of the associated statistical decision probabilities are then developed. With this theory, the probabilities of committing type I, II, and III errors can be controlled so that the probability of successful identification of an outlier can be guaranteed when performing data snooping. The theoretical findings are then demonstrated using a simulated GPS point positioning example. Detailed analysis shows that the larger the correlation coefficient, between the outlier statistics, the smaller the probability of committing a type II error and the greater the probability of committing a type III error. When the correlation coefficient is greater than 0.8, there is a far greater chance of committing a type III error than committing a type II error. In addition, to guarantee successful identification of an outlier with a set probability, the minimal detectable size of the outlier (often called the Minimal Detectable Bias or MDB) should dramatically increase with the correlation coefficient.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer-Verlag</pub><doi>10.1007/s00190-013-0629-0</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0949-7714
ispartof Journal of geodesy, 2013-06, Vol.87 (6), p.591-604
issn 0949-7714
1432-1394
language eng
recordid cdi_proquest_journals_1357146276
source Springer Nature
subjects Correlation coefficient
Earth and Environmental Science
Earth Sciences
Geodetic surveys
Geodetics
Geophysics/Geodesy
Global positioning systems
GPS
Hypothesis testing
Review Paper
title Outlier separability analysis with a multiple alternative hypotheses test
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T19%3A24%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Outlier%20separability%20analysis%20with%20a%20multiple%20alternative%20hypotheses%20test&rft.jtitle=Journal%20of%20geodesy&rft.au=Yang,%20Ling&rft.date=2013-06-01&rft.volume=87&rft.issue=6&rft.spage=591&rft.epage=604&rft.pages=591-604&rft.issn=0949-7714&rft.eissn=1432-1394&rft_id=info:doi/10.1007/s00190-013-0629-0&rft_dat=%3Cproquest_cross%3E2984504291%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c316t-9238b7f21e4bee0861d97d1afca9d260284e199224a0abbecc80cebecc93970e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1357146276&rft_id=info:pmid/&rfr_iscdi=true