Loading…
Outlier separability analysis with a multiple alternative hypotheses test
Outlier separability analysis is a fundamental component of modern geodetic measurement analysis, positioning, navigation, and many other applications. The current theory of outlier separability is based on using two alternative hypotheses—an assumption that may not necessarily be valid. In this pap...
Saved in:
Published in: | Journal of geodesy 2013-06, Vol.87 (6), p.591-604 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c316t-9238b7f21e4bee0861d97d1afca9d260284e199224a0abbecc80cebecc93970e3 |
---|---|
cites | cdi_FETCH-LOGICAL-c316t-9238b7f21e4bee0861d97d1afca9d260284e199224a0abbecc80cebecc93970e3 |
container_end_page | 604 |
container_issue | 6 |
container_start_page | 591 |
container_title | Journal of geodesy |
container_volume | 87 |
creator | Yang, Ling Wang, Jinling Knight, Nathan L. Shen, Yunzhong |
description | Outlier separability analysis is a fundamental component of modern geodetic measurement analysis, positioning, navigation, and many other applications. The current theory of outlier separability is based on using two alternative hypotheses—an assumption that may not necessarily be valid. In this paper, the current theory of outlier separability is statistically analysed and then extended to the general case, where there are multiple alternative hypotheses. Taking into consideration the complexity of the critical region and the probability density function of the outlier test, the bounds of the associated statistical decision probabilities are then developed. With this theory, the probabilities of committing type I, II, and III errors can be controlled so that the probability of successful identification of an outlier can be guaranteed when performing data snooping. The theoretical findings are then demonstrated using a simulated GPS point positioning example. Detailed analysis shows that the larger the correlation coefficient, between the outlier statistics, the smaller the probability of committing a type II error and the greater the probability of committing a type III error. When the correlation coefficient is greater than 0.8, there is a far greater chance of committing a type III error than committing a type II error. In addition, to guarantee successful identification of an outlier with a set probability, the minimal detectable size of the outlier (often called the Minimal Detectable Bias or MDB) should dramatically increase with the correlation coefficient. |
doi_str_mv | 10.1007/s00190-013-0629-0 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1357146276</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2984504291</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-9238b7f21e4bee0861d97d1afca9d260284e199224a0abbecc80cebecc93970e3</originalsourceid><addsrcrecordid>eNp1kD1PwzAQhi0EEqXwA9gsMRvOdhrHI6r4qFSpC8yWk16oK7cJtgPKv8dVGFiYbnne9-4eQm453HMA9RABuAYGXDIohWZwRma8kIJxqYtzMgNdaKYULy7JVYz7TKtFVc7IajMk7zDQiL0NtnbepZHao_VjdJF-u7Sjlh4Gn1zvkVqfMBxtcl9Id2PfpR1GjDRhTNfkorU-4s3vnJP356e35Stbb15Wy8c1ayQvE9NCVrVqBceiRoSq5Futtty2jdVbUYKoCuRaC1FYsHWNTVNBg6eppVaAck7upt4-dJ9DXmz23ZBv8tFwucgflkKVmeIT1YQuxoCt6YM72DAaDuZkzEzGTDZmTsYM5IyYMjGzxw8Mf5r_Df0A51pvdw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1357146276</pqid></control><display><type>article</type><title>Outlier separability analysis with a multiple alternative hypotheses test</title><source>Springer Nature</source><creator>Yang, Ling ; Wang, Jinling ; Knight, Nathan L. ; Shen, Yunzhong</creator><creatorcontrib>Yang, Ling ; Wang, Jinling ; Knight, Nathan L. ; Shen, Yunzhong</creatorcontrib><description>Outlier separability analysis is a fundamental component of modern geodetic measurement analysis, positioning, navigation, and many other applications. The current theory of outlier separability is based on using two alternative hypotheses—an assumption that may not necessarily be valid. In this paper, the current theory of outlier separability is statistically analysed and then extended to the general case, where there are multiple alternative hypotheses. Taking into consideration the complexity of the critical region and the probability density function of the outlier test, the bounds of the associated statistical decision probabilities are then developed. With this theory, the probabilities of committing type I, II, and III errors can be controlled so that the probability of successful identification of an outlier can be guaranteed when performing data snooping. The theoretical findings are then demonstrated using a simulated GPS point positioning example. Detailed analysis shows that the larger the correlation coefficient, between the outlier statistics, the smaller the probability of committing a type II error and the greater the probability of committing a type III error. When the correlation coefficient is greater than 0.8, there is a far greater chance of committing a type III error than committing a type II error. In addition, to guarantee successful identification of an outlier with a set probability, the minimal detectable size of the outlier (often called the Minimal Detectable Bias or MDB) should dramatically increase with the correlation coefficient.</description><identifier>ISSN: 0949-7714</identifier><identifier>EISSN: 1432-1394</identifier><identifier>DOI: 10.1007/s00190-013-0629-0</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer-Verlag</publisher><subject>Correlation coefficient ; Earth and Environmental Science ; Earth Sciences ; Geodetic surveys ; Geodetics ; Geophysics/Geodesy ; Global positioning systems ; GPS ; Hypothesis testing ; Review Paper</subject><ispartof>Journal of geodesy, 2013-06, Vol.87 (6), p.591-604</ispartof><rights>Springer-Verlag Berlin Heidelberg 2013</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-9238b7f21e4bee0861d97d1afca9d260284e199224a0abbecc80cebecc93970e3</citedby><cites>FETCH-LOGICAL-c316t-9238b7f21e4bee0861d97d1afca9d260284e199224a0abbecc80cebecc93970e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Yang, Ling</creatorcontrib><creatorcontrib>Wang, Jinling</creatorcontrib><creatorcontrib>Knight, Nathan L.</creatorcontrib><creatorcontrib>Shen, Yunzhong</creatorcontrib><title>Outlier separability analysis with a multiple alternative hypotheses test</title><title>Journal of geodesy</title><addtitle>J Geod</addtitle><description>Outlier separability analysis is a fundamental component of modern geodetic measurement analysis, positioning, navigation, and many other applications. The current theory of outlier separability is based on using two alternative hypotheses—an assumption that may not necessarily be valid. In this paper, the current theory of outlier separability is statistically analysed and then extended to the general case, where there are multiple alternative hypotheses. Taking into consideration the complexity of the critical region and the probability density function of the outlier test, the bounds of the associated statistical decision probabilities are then developed. With this theory, the probabilities of committing type I, II, and III errors can be controlled so that the probability of successful identification of an outlier can be guaranteed when performing data snooping. The theoretical findings are then demonstrated using a simulated GPS point positioning example. Detailed analysis shows that the larger the correlation coefficient, between the outlier statistics, the smaller the probability of committing a type II error and the greater the probability of committing a type III error. When the correlation coefficient is greater than 0.8, there is a far greater chance of committing a type III error than committing a type II error. In addition, to guarantee successful identification of an outlier with a set probability, the minimal detectable size of the outlier (often called the Minimal Detectable Bias or MDB) should dramatically increase with the correlation coefficient.</description><subject>Correlation coefficient</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Geodetic surveys</subject><subject>Geodetics</subject><subject>Geophysics/Geodesy</subject><subject>Global positioning systems</subject><subject>GPS</subject><subject>Hypothesis testing</subject><subject>Review Paper</subject><issn>0949-7714</issn><issn>1432-1394</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNp1kD1PwzAQhi0EEqXwA9gsMRvOdhrHI6r4qFSpC8yWk16oK7cJtgPKv8dVGFiYbnne9-4eQm453HMA9RABuAYGXDIohWZwRma8kIJxqYtzMgNdaKYULy7JVYz7TKtFVc7IajMk7zDQiL0NtnbepZHao_VjdJF-u7Sjlh4Gn1zvkVqfMBxtcl9Id2PfpR1GjDRhTNfkorU-4s3vnJP356e35Stbb15Wy8c1ayQvE9NCVrVqBceiRoSq5Futtty2jdVbUYKoCuRaC1FYsHWNTVNBg6eppVaAck7upt4-dJ9DXmz23ZBv8tFwucgflkKVmeIT1YQuxoCt6YM72DAaDuZkzEzGTDZmTsYM5IyYMjGzxw8Mf5r_Df0A51pvdw</recordid><startdate>20130601</startdate><enddate>20130601</enddate><creator>Yang, Ling</creator><creator>Wang, Jinling</creator><creator>Knight, Nathan L.</creator><creator>Shen, Yunzhong</creator><general>Springer-Verlag</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TG</scope><scope>7TN</scope><scope>7XB</scope><scope>88I</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>M2P</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope></search><sort><creationdate>20130601</creationdate><title>Outlier separability analysis with a multiple alternative hypotheses test</title><author>Yang, Ling ; Wang, Jinling ; Knight, Nathan L. ; Shen, Yunzhong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-9238b7f21e4bee0861d97d1afca9d260284e199224a0abbecc80cebecc93970e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Correlation coefficient</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Geodetic surveys</topic><topic>Geodetics</topic><topic>Geophysics/Geodesy</topic><topic>Global positioning systems</topic><topic>GPS</topic><topic>Hypothesis testing</topic><topic>Review Paper</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Ling</creatorcontrib><creatorcontrib>Wang, Jinling</creatorcontrib><creatorcontrib>Knight, Nathan L.</creatorcontrib><creatorcontrib>Shen, Yunzhong</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Journal of geodesy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Ling</au><au>Wang, Jinling</au><au>Knight, Nathan L.</au><au>Shen, Yunzhong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Outlier separability analysis with a multiple alternative hypotheses test</atitle><jtitle>Journal of geodesy</jtitle><stitle>J Geod</stitle><date>2013-06-01</date><risdate>2013</risdate><volume>87</volume><issue>6</issue><spage>591</spage><epage>604</epage><pages>591-604</pages><issn>0949-7714</issn><eissn>1432-1394</eissn><abstract>Outlier separability analysis is a fundamental component of modern geodetic measurement analysis, positioning, navigation, and many other applications. The current theory of outlier separability is based on using two alternative hypotheses—an assumption that may not necessarily be valid. In this paper, the current theory of outlier separability is statistically analysed and then extended to the general case, where there are multiple alternative hypotheses. Taking into consideration the complexity of the critical region and the probability density function of the outlier test, the bounds of the associated statistical decision probabilities are then developed. With this theory, the probabilities of committing type I, II, and III errors can be controlled so that the probability of successful identification of an outlier can be guaranteed when performing data snooping. The theoretical findings are then demonstrated using a simulated GPS point positioning example. Detailed analysis shows that the larger the correlation coefficient, between the outlier statistics, the smaller the probability of committing a type II error and the greater the probability of committing a type III error. When the correlation coefficient is greater than 0.8, there is a far greater chance of committing a type III error than committing a type II error. In addition, to guarantee successful identification of an outlier with a set probability, the minimal detectable size of the outlier (often called the Minimal Detectable Bias or MDB) should dramatically increase with the correlation coefficient.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer-Verlag</pub><doi>10.1007/s00190-013-0629-0</doi><tpages>14</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0949-7714 |
ispartof | Journal of geodesy, 2013-06, Vol.87 (6), p.591-604 |
issn | 0949-7714 1432-1394 |
language | eng |
recordid | cdi_proquest_journals_1357146276 |
source | Springer Nature |
subjects | Correlation coefficient Earth and Environmental Science Earth Sciences Geodetic surveys Geodetics Geophysics/Geodesy Global positioning systems GPS Hypothesis testing Review Paper |
title | Outlier separability analysis with a multiple alternative hypotheses test |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T19%3A24%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Outlier%20separability%20analysis%20with%20a%20multiple%20alternative%20hypotheses%20test&rft.jtitle=Journal%20of%20geodesy&rft.au=Yang,%20Ling&rft.date=2013-06-01&rft.volume=87&rft.issue=6&rft.spage=591&rft.epage=604&rft.pages=591-604&rft.issn=0949-7714&rft.eissn=1432-1394&rft_id=info:doi/10.1007/s00190-013-0629-0&rft_dat=%3Cproquest_cross%3E2984504291%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c316t-9238b7f21e4bee0861d97d1afca9d260284e199224a0abbecc80cebecc93970e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1357146276&rft_id=info:pmid/&rfr_iscdi=true |