Loading…

The Effects of Uphill Vs. Level-Grade High-Intensity Interval Training on V[Combining Dot Above]O2max, Vmax, VLT, and Tmax in Well-Trained Distance Runners

ABSTRACTFerley, DD, Osborn, RW, and Vukovich, MD. The effects of uphill vs. level-grade high-intensity interval training on V[Combining Dot Above]O2max, Vmax, VLT, and Tmax in well-trained distance runners. J Strength Cond Res 27(6)1549–1559, 2013—Uphill running represents a frequently used and ofte...

Full description

Saved in:
Bibliographic Details
Published in:Journal of strength and conditioning research 2013-06, Vol.27 (6), p.1549-1559
Main Authors: Ferley, Derek D, Osborn, Roy W, Vukovich, Matthew D
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:ABSTRACTFerley, DD, Osborn, RW, and Vukovich, MD. The effects of uphill vs. level-grade high-intensity interval training on V[Combining Dot Above]O2max, Vmax, VLT, and Tmax in well-trained distance runners. J Strength Cond Res 27(6)1549–1559, 2013—Uphill running represents a frequently used and often prescribed training tactic in the development of competitive distance runners but remains largely uninvestigated and unsubstantiated as a training modality. The purpose of this investigation included documenting the effects of uphill interval training compared with level-grade interval training on maximal oxygen consumption (V[Combining Dot Above]O2max), the running speed associated with V[Combining Dot Above]O2max (Vmax), the running speed associated with lactate threshold (VLT), and the duration for which Vmax can be sustained (Tmax) in well-trained distance runners. Thirty-two well-trained distance runners (age, 27.4 ± 3.8 years; body mass, 64.8 ± 8.9 kg; height, 173.6 ± 6.4 cm; and V[Combining Dot Above]O2max, 60.9 ± 8.5 ml·min·kg) received assignment to an uphill interval training group (GHill = 12), level-grade interval training group (GFlat = 12), or control group (GCon = 8). GHill and GFlat completed 12 interval and 12 continuous running sessions over 6 weeks, whereas GCon maintained their normal training routine. Pre- and posttest measures of V[Combining Dot Above]O2max, Vmax, VLT, and Tmax were used to assess performance. A 3 × 2 repeated measures analysis of variance was performed for each dependent variable and revealed a significant difference in Tmax in both GHill and GFlat (p < 0.05). With regard to running performance, the results indicate that both uphill and level-grade interval training can induce significant improvements in a run-to-exhaustion test in well-trained runners at the speed associated with V[Combining Dot Above]O2max but that traditional level-grade training produces greater gains.
ISSN:1064-8011
1533-4287
DOI:10.1519/JSC.0b013e3182736923