Loading…
Generalized Jackknife-Based Estimators for Univariate Extreme-Value Modeling
In this article, we revisit the importance of the generalized jackknife in the construction of reliable semi-parametric estimates of some parameters of extreme or even rare events. The generalized jackknife statistic is applied to a minimum-variance reduced-bias estimator of a positive extreme value...
Saved in:
Published in: | Communications in statistics. Theory and methods 2013-04, Vol.42 (7), p.1227-1245 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c368t-42a5d3207f3a842e693e6f0eae6a34b43c005f5ece55ab92eeec7b1a22ab309d3 |
---|---|
cites | cdi_FETCH-LOGICAL-c368t-42a5d3207f3a842e693e6f0eae6a34b43c005f5ece55ab92eeec7b1a22ab309d3 |
container_end_page | 1245 |
container_issue | 7 |
container_start_page | 1227 |
container_title | Communications in statistics. Theory and methods |
container_volume | 42 |
creator | Gomes, M. Ivette Martins, M. João Neves, M. Manuela |
description | In this article, we revisit the importance of the generalized jackknife in the construction of reliable semi-parametric estimates of some parameters of extreme or even rare events. The generalized jackknife statistic is applied to a minimum-variance reduced-bias estimator of a positive extreme value index-a primary parameter in statistics of extremes. A couple of refinements are proposed and a simulation study shows that these are able to achieve a lower mean square error. A real data illustration is also provided. |
doi_str_mv | 10.1080/03610926.2012.725263 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1399952418</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3019402871</sourcerecordid><originalsourceid>FETCH-LOGICAL-c368t-42a5d3207f3a842e693e6f0eae6a34b43c005f5ece55ab92eeec7b1a22ab309d3</originalsourceid><addsrcrecordid>eNp9kD1PwzAQhi0EEqXwDxgisbCk-CN2kglBVQqoiIUiNuuSXJDbJC52ApRfT6LCwsB0Oul5X909hJwyOmE0oRdUKEZTriacMj6JueRK7JERk4KHEZMv-2Q0IOHAHJIj71eUMhknYkQWc2zQQWW-sAjuIV-vG1NieA2-32e-NTW01vmgtC5YNuYdnIEWg9ln67DG8BmqDoMHW2BlmtdjclBC5fHkZ47J8mb2NL0NF4_zu-nVIsyFStow4iALwWlcCkgijioVqEqKgApElEUip1SWEnOUErKUI2IeZww4h0zQtBBjcr7r3Tj71qFvdW18jlUFDdrOa6ZiJlSqVNKjZ3_Qle1c01-nmUjTVPKIDVS0o3JnvXdY6o3rP3dbzageFOtfxXpQrHeK-9jlLmaa3k8NH9ZVhW5hW1lXOmhy47X4t-EbdZ2CIA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1399952418</pqid></control><display><type>article</type><title>Generalized Jackknife-Based Estimators for Univariate Extreme-Value Modeling</title><source>Taylor and Francis Science and Technology Collection</source><creator>Gomes, M. Ivette ; Martins, M. João ; Neves, M. Manuela</creator><creatorcontrib>Gomes, M. Ivette ; Martins, M. João ; Neves, M. Manuela</creatorcontrib><description>In this article, we revisit the importance of the generalized jackknife in the construction of reliable semi-parametric estimates of some parameters of extreme or even rare events. The generalized jackknife statistic is applied to a minimum-variance reduced-bias estimator of a positive extreme value index-a primary parameter in statistics of extremes. A couple of refinements are proposed and a simulation study shows that these are able to achieve a lower mean square error. A real data illustration is also provided.</description><identifier>ISSN: 0361-0926</identifier><identifier>EISSN: 1532-415X</identifier><identifier>DOI: 10.1080/03610926.2012.725263</identifier><language>eng</language><publisher>Philadelphia: Taylor & Francis Group</publisher><subject>Bias reduction ; Error analysis ; Estimators ; Extreme value index ; Extreme values ; Generalized jackknife ; Joining ; Mathematical models ; Mean square errors ; Mean square values ; Primary 62G32, 62E20 ; Regression analysis ; Secondary 65C05 ; Semi-parametric estimation ; Simulation ; Statistics ; Statistics of extremes</subject><ispartof>Communications in statistics. Theory and methods, 2013-04, Vol.42 (7), p.1227-1245</ispartof><rights>Copyright Taylor & Francis Group, LLC 2013</rights><rights>Copyright Taylor and Francis Group, LLC</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c368t-42a5d3207f3a842e693e6f0eae6a34b43c005f5ece55ab92eeec7b1a22ab309d3</citedby><cites>FETCH-LOGICAL-c368t-42a5d3207f3a842e693e6f0eae6a34b43c005f5ece55ab92eeec7b1a22ab309d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Gomes, M. Ivette</creatorcontrib><creatorcontrib>Martins, M. João</creatorcontrib><creatorcontrib>Neves, M. Manuela</creatorcontrib><title>Generalized Jackknife-Based Estimators for Univariate Extreme-Value Modeling</title><title>Communications in statistics. Theory and methods</title><description>In this article, we revisit the importance of the generalized jackknife in the construction of reliable semi-parametric estimates of some parameters of extreme or even rare events. The generalized jackknife statistic is applied to a minimum-variance reduced-bias estimator of a positive extreme value index-a primary parameter in statistics of extremes. A couple of refinements are proposed and a simulation study shows that these are able to achieve a lower mean square error. A real data illustration is also provided.</description><subject>Bias reduction</subject><subject>Error analysis</subject><subject>Estimators</subject><subject>Extreme value index</subject><subject>Extreme values</subject><subject>Generalized jackknife</subject><subject>Joining</subject><subject>Mathematical models</subject><subject>Mean square errors</subject><subject>Mean square values</subject><subject>Primary 62G32, 62E20</subject><subject>Regression analysis</subject><subject>Secondary 65C05</subject><subject>Semi-parametric estimation</subject><subject>Simulation</subject><subject>Statistics</subject><subject>Statistics of extremes</subject><issn>0361-0926</issn><issn>1532-415X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNp9kD1PwzAQhi0EEqXwDxgisbCk-CN2kglBVQqoiIUiNuuSXJDbJC52ApRfT6LCwsB0Oul5X909hJwyOmE0oRdUKEZTriacMj6JueRK7JERk4KHEZMv-2Q0IOHAHJIj71eUMhknYkQWc2zQQWW-sAjuIV-vG1NieA2-32e-NTW01vmgtC5YNuYdnIEWg9ln67DG8BmqDoMHW2BlmtdjclBC5fHkZ47J8mb2NL0NF4_zu-nVIsyFStow4iALwWlcCkgijioVqEqKgApElEUip1SWEnOUErKUI2IeZww4h0zQtBBjcr7r3Tj71qFvdW18jlUFDdrOa6ZiJlSqVNKjZ3_Qle1c01-nmUjTVPKIDVS0o3JnvXdY6o3rP3dbzageFOtfxXpQrHeK-9jlLmaa3k8NH9ZVhW5hW1lXOmhy47X4t-EbdZ2CIA</recordid><startdate>20130401</startdate><enddate>20130401</enddate><creator>Gomes, M. Ivette</creator><creator>Martins, M. João</creator><creator>Neves, M. Manuela</creator><general>Taylor & Francis Group</general><general>Taylor & Francis Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20130401</creationdate><title>Generalized Jackknife-Based Estimators for Univariate Extreme-Value Modeling</title><author>Gomes, M. Ivette ; Martins, M. João ; Neves, M. Manuela</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c368t-42a5d3207f3a842e693e6f0eae6a34b43c005f5ece55ab92eeec7b1a22ab309d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Bias reduction</topic><topic>Error analysis</topic><topic>Estimators</topic><topic>Extreme value index</topic><topic>Extreme values</topic><topic>Generalized jackknife</topic><topic>Joining</topic><topic>Mathematical models</topic><topic>Mean square errors</topic><topic>Mean square values</topic><topic>Primary 62G32, 62E20</topic><topic>Regression analysis</topic><topic>Secondary 65C05</topic><topic>Semi-parametric estimation</topic><topic>Simulation</topic><topic>Statistics</topic><topic>Statistics of extremes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gomes, M. Ivette</creatorcontrib><creatorcontrib>Martins, M. João</creatorcontrib><creatorcontrib>Neves, M. Manuela</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Communications in statistics. Theory and methods</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gomes, M. Ivette</au><au>Martins, M. João</au><au>Neves, M. Manuela</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Generalized Jackknife-Based Estimators for Univariate Extreme-Value Modeling</atitle><jtitle>Communications in statistics. Theory and methods</jtitle><date>2013-04-01</date><risdate>2013</risdate><volume>42</volume><issue>7</issue><spage>1227</spage><epage>1245</epage><pages>1227-1245</pages><issn>0361-0926</issn><eissn>1532-415X</eissn><abstract>In this article, we revisit the importance of the generalized jackknife in the construction of reliable semi-parametric estimates of some parameters of extreme or even rare events. The generalized jackknife statistic is applied to a minimum-variance reduced-bias estimator of a positive extreme value index-a primary parameter in statistics of extremes. A couple of refinements are proposed and a simulation study shows that these are able to achieve a lower mean square error. A real data illustration is also provided.</abstract><cop>Philadelphia</cop><pub>Taylor & Francis Group</pub><doi>10.1080/03610926.2012.725263</doi><tpages>19</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0361-0926 |
ispartof | Communications in statistics. Theory and methods, 2013-04, Vol.42 (7), p.1227-1245 |
issn | 0361-0926 1532-415X |
language | eng |
recordid | cdi_proquest_journals_1399952418 |
source | Taylor and Francis Science and Technology Collection |
subjects | Bias reduction Error analysis Estimators Extreme value index Extreme values Generalized jackknife Joining Mathematical models Mean square errors Mean square values Primary 62G32, 62E20 Regression analysis Secondary 65C05 Semi-parametric estimation Simulation Statistics Statistics of extremes |
title | Generalized Jackknife-Based Estimators for Univariate Extreme-Value Modeling |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T20%3A23%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Generalized%20Jackknife-Based%20Estimators%20for%20Univariate%20Extreme-Value%20Modeling&rft.jtitle=Communications%20in%20statistics.%20Theory%20and%20methods&rft.au=Gomes,%20M.%20Ivette&rft.date=2013-04-01&rft.volume=42&rft.issue=7&rft.spage=1227&rft.epage=1245&rft.pages=1227-1245&rft.issn=0361-0926&rft.eissn=1532-415X&rft_id=info:doi/10.1080/03610926.2012.725263&rft_dat=%3Cproquest_cross%3E3019402871%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c368t-42a5d3207f3a842e693e6f0eae6a34b43c005f5ece55ab92eeec7b1a22ab309d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1399952418&rft_id=info:pmid/&rfr_iscdi=true |