Loading…

Generalized Jackknife-Based Estimators for Univariate Extreme-Value Modeling

In this article, we revisit the importance of the generalized jackknife in the construction of reliable semi-parametric estimates of some parameters of extreme or even rare events. The generalized jackknife statistic is applied to a minimum-variance reduced-bias estimator of a positive extreme value...

Full description

Saved in:
Bibliographic Details
Published in:Communications in statistics. Theory and methods 2013-04, Vol.42 (7), p.1227-1245
Main Authors: Gomes, M. Ivette, Martins, M. João, Neves, M. Manuela
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c368t-42a5d3207f3a842e693e6f0eae6a34b43c005f5ece55ab92eeec7b1a22ab309d3
cites cdi_FETCH-LOGICAL-c368t-42a5d3207f3a842e693e6f0eae6a34b43c005f5ece55ab92eeec7b1a22ab309d3
container_end_page 1245
container_issue 7
container_start_page 1227
container_title Communications in statistics. Theory and methods
container_volume 42
creator Gomes, M. Ivette
Martins, M. João
Neves, M. Manuela
description In this article, we revisit the importance of the generalized jackknife in the construction of reliable semi-parametric estimates of some parameters of extreme or even rare events. The generalized jackknife statistic is applied to a minimum-variance reduced-bias estimator of a positive extreme value index-a primary parameter in statistics of extremes. A couple of refinements are proposed and a simulation study shows that these are able to achieve a lower mean square error. A real data illustration is also provided.
doi_str_mv 10.1080/03610926.2012.725263
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1399952418</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3019402871</sourcerecordid><originalsourceid>FETCH-LOGICAL-c368t-42a5d3207f3a842e693e6f0eae6a34b43c005f5ece55ab92eeec7b1a22ab309d3</originalsourceid><addsrcrecordid>eNp9kD1PwzAQhi0EEqXwDxgisbCk-CN2kglBVQqoiIUiNuuSXJDbJC52ApRfT6LCwsB0Oul5X909hJwyOmE0oRdUKEZTriacMj6JueRK7JERk4KHEZMv-2Q0IOHAHJIj71eUMhknYkQWc2zQQWW-sAjuIV-vG1NieA2-32e-NTW01vmgtC5YNuYdnIEWg9ln67DG8BmqDoMHW2BlmtdjclBC5fHkZ47J8mb2NL0NF4_zu-nVIsyFStow4iALwWlcCkgijioVqEqKgApElEUip1SWEnOUErKUI2IeZww4h0zQtBBjcr7r3Tj71qFvdW18jlUFDdrOa6ZiJlSqVNKjZ3_Qle1c01-nmUjTVPKIDVS0o3JnvXdY6o3rP3dbzageFOtfxXpQrHeK-9jlLmaa3k8NH9ZVhW5hW1lXOmhy47X4t-EbdZ2CIA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1399952418</pqid></control><display><type>article</type><title>Generalized Jackknife-Based Estimators for Univariate Extreme-Value Modeling</title><source>Taylor and Francis Science and Technology Collection</source><creator>Gomes, M. Ivette ; Martins, M. João ; Neves, M. Manuela</creator><creatorcontrib>Gomes, M. Ivette ; Martins, M. João ; Neves, M. Manuela</creatorcontrib><description>In this article, we revisit the importance of the generalized jackknife in the construction of reliable semi-parametric estimates of some parameters of extreme or even rare events. The generalized jackknife statistic is applied to a minimum-variance reduced-bias estimator of a positive extreme value index-a primary parameter in statistics of extremes. A couple of refinements are proposed and a simulation study shows that these are able to achieve a lower mean square error. A real data illustration is also provided.</description><identifier>ISSN: 0361-0926</identifier><identifier>EISSN: 1532-415X</identifier><identifier>DOI: 10.1080/03610926.2012.725263</identifier><language>eng</language><publisher>Philadelphia: Taylor &amp; Francis Group</publisher><subject>Bias reduction ; Error analysis ; Estimators ; Extreme value index ; Extreme values ; Generalized jackknife ; Joining ; Mathematical models ; Mean square errors ; Mean square values ; Primary 62G32, 62E20 ; Regression analysis ; Secondary 65C05 ; Semi-parametric estimation ; Simulation ; Statistics ; Statistics of extremes</subject><ispartof>Communications in statistics. Theory and methods, 2013-04, Vol.42 (7), p.1227-1245</ispartof><rights>Copyright Taylor &amp; Francis Group, LLC 2013</rights><rights>Copyright Taylor and Francis Group, LLC</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c368t-42a5d3207f3a842e693e6f0eae6a34b43c005f5ece55ab92eeec7b1a22ab309d3</citedby><cites>FETCH-LOGICAL-c368t-42a5d3207f3a842e693e6f0eae6a34b43c005f5ece55ab92eeec7b1a22ab309d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Gomes, M. Ivette</creatorcontrib><creatorcontrib>Martins, M. João</creatorcontrib><creatorcontrib>Neves, M. Manuela</creatorcontrib><title>Generalized Jackknife-Based Estimators for Univariate Extreme-Value Modeling</title><title>Communications in statistics. Theory and methods</title><description>In this article, we revisit the importance of the generalized jackknife in the construction of reliable semi-parametric estimates of some parameters of extreme or even rare events. The generalized jackknife statistic is applied to a minimum-variance reduced-bias estimator of a positive extreme value index-a primary parameter in statistics of extremes. A couple of refinements are proposed and a simulation study shows that these are able to achieve a lower mean square error. A real data illustration is also provided.</description><subject>Bias reduction</subject><subject>Error analysis</subject><subject>Estimators</subject><subject>Extreme value index</subject><subject>Extreme values</subject><subject>Generalized jackknife</subject><subject>Joining</subject><subject>Mathematical models</subject><subject>Mean square errors</subject><subject>Mean square values</subject><subject>Primary 62G32, 62E20</subject><subject>Regression analysis</subject><subject>Secondary 65C05</subject><subject>Semi-parametric estimation</subject><subject>Simulation</subject><subject>Statistics</subject><subject>Statistics of extremes</subject><issn>0361-0926</issn><issn>1532-415X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNp9kD1PwzAQhi0EEqXwDxgisbCk-CN2kglBVQqoiIUiNuuSXJDbJC52ApRfT6LCwsB0Oul5X909hJwyOmE0oRdUKEZTriacMj6JueRK7JERk4KHEZMv-2Q0IOHAHJIj71eUMhknYkQWc2zQQWW-sAjuIV-vG1NieA2-32e-NTW01vmgtC5YNuYdnIEWg9ln67DG8BmqDoMHW2BlmtdjclBC5fHkZ47J8mb2NL0NF4_zu-nVIsyFStow4iALwWlcCkgijioVqEqKgApElEUip1SWEnOUErKUI2IeZww4h0zQtBBjcr7r3Tj71qFvdW18jlUFDdrOa6ZiJlSqVNKjZ3_Qle1c01-nmUjTVPKIDVS0o3JnvXdY6o3rP3dbzageFOtfxXpQrHeK-9jlLmaa3k8NH9ZVhW5hW1lXOmhy47X4t-EbdZ2CIA</recordid><startdate>20130401</startdate><enddate>20130401</enddate><creator>Gomes, M. Ivette</creator><creator>Martins, M. João</creator><creator>Neves, M. Manuela</creator><general>Taylor &amp; Francis Group</general><general>Taylor &amp; Francis Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20130401</creationdate><title>Generalized Jackknife-Based Estimators for Univariate Extreme-Value Modeling</title><author>Gomes, M. Ivette ; Martins, M. João ; Neves, M. Manuela</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c368t-42a5d3207f3a842e693e6f0eae6a34b43c005f5ece55ab92eeec7b1a22ab309d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Bias reduction</topic><topic>Error analysis</topic><topic>Estimators</topic><topic>Extreme value index</topic><topic>Extreme values</topic><topic>Generalized jackknife</topic><topic>Joining</topic><topic>Mathematical models</topic><topic>Mean square errors</topic><topic>Mean square values</topic><topic>Primary 62G32, 62E20</topic><topic>Regression analysis</topic><topic>Secondary 65C05</topic><topic>Semi-parametric estimation</topic><topic>Simulation</topic><topic>Statistics</topic><topic>Statistics of extremes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gomes, M. Ivette</creatorcontrib><creatorcontrib>Martins, M. João</creatorcontrib><creatorcontrib>Neves, M. Manuela</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Communications in statistics. Theory and methods</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gomes, M. Ivette</au><au>Martins, M. João</au><au>Neves, M. Manuela</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Generalized Jackknife-Based Estimators for Univariate Extreme-Value Modeling</atitle><jtitle>Communications in statistics. Theory and methods</jtitle><date>2013-04-01</date><risdate>2013</risdate><volume>42</volume><issue>7</issue><spage>1227</spage><epage>1245</epage><pages>1227-1245</pages><issn>0361-0926</issn><eissn>1532-415X</eissn><abstract>In this article, we revisit the importance of the generalized jackknife in the construction of reliable semi-parametric estimates of some parameters of extreme or even rare events. The generalized jackknife statistic is applied to a minimum-variance reduced-bias estimator of a positive extreme value index-a primary parameter in statistics of extremes. A couple of refinements are proposed and a simulation study shows that these are able to achieve a lower mean square error. A real data illustration is also provided.</abstract><cop>Philadelphia</cop><pub>Taylor &amp; Francis Group</pub><doi>10.1080/03610926.2012.725263</doi><tpages>19</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0361-0926
ispartof Communications in statistics. Theory and methods, 2013-04, Vol.42 (7), p.1227-1245
issn 0361-0926
1532-415X
language eng
recordid cdi_proquest_journals_1399952418
source Taylor and Francis Science and Technology Collection
subjects Bias reduction
Error analysis
Estimators
Extreme value index
Extreme values
Generalized jackknife
Joining
Mathematical models
Mean square errors
Mean square values
Primary 62G32, 62E20
Regression analysis
Secondary 65C05
Semi-parametric estimation
Simulation
Statistics
Statistics of extremes
title Generalized Jackknife-Based Estimators for Univariate Extreme-Value Modeling
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T20%3A23%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Generalized%20Jackknife-Based%20Estimators%20for%20Univariate%20Extreme-Value%20Modeling&rft.jtitle=Communications%20in%20statistics.%20Theory%20and%20methods&rft.au=Gomes,%20M.%20Ivette&rft.date=2013-04-01&rft.volume=42&rft.issue=7&rft.spage=1227&rft.epage=1245&rft.pages=1227-1245&rft.issn=0361-0926&rft.eissn=1532-415X&rft_id=info:doi/10.1080/03610926.2012.725263&rft_dat=%3Cproquest_cross%3E3019402871%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c368t-42a5d3207f3a842e693e6f0eae6a34b43c005f5ece55ab92eeec7b1a22ab309d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1399952418&rft_id=info:pmid/&rfr_iscdi=true