Loading…

Text mining in computational advertising

Computational advertising uses information on web‐browsing activity and additional covariates to select advertisements for display to the user. The statistical challenge is to develop methodology that matches ads to users who are likely to purchase the advertised product. These methods not only invo...

Full description

Saved in:
Bibliographic Details
Published in:Statistical analysis and data mining 2013-08, Vol.6 (4), p.273-285
Main Authors: Soriano, Jacopo, Au, Timothy, Banks, David
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c3357-e0774c100747f195c304259f5dfc647b1c6c1eae17552e7cacaf154a6dbd1db13
cites cdi_FETCH-LOGICAL-c3357-e0774c100747f195c304259f5dfc647b1c6c1eae17552e7cacaf154a6dbd1db13
container_end_page 285
container_issue 4
container_start_page 273
container_title Statistical analysis and data mining
container_volume 6
creator Soriano, Jacopo
Au, Timothy
Banks, David
description Computational advertising uses information on web‐browsing activity and additional covariates to select advertisements for display to the user. The statistical challenge is to develop methodology that matches ads to users who are likely to purchase the advertised product. These methods not only involve text mining, but also may draw upon additional modeling related to both the user and the advertisement. This paper reviews various aspects of text mining, including n‐grams, topic modeling, and text networks, and discusses different strategies in the context of specific business models. © 2013 Wiley Periodicals, Inc. Statistical Analysis and Data Mining, 2013
doi_str_mv 10.1002/sam.11197
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1415163627</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3031678411</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3357-e0774c100747f195c304259f5dfc647b1c6c1eae17552e7cacaf154a6dbd1db13</originalsourceid><addsrcrecordid>eNp1kD1PwzAQhi0EEqUw8A8iscCQ1udPMpYKWlCBoUVILJbjOMilSYqdQPvvCQS6Md1J97ynVw9Cp4AHgDEZBl0MACCRe6gHCSUxXEqyv9sFO0RHISwx5gID66Hzhd3UUeFKV75GroxMVaybWteuKvUq0tmH9bUL7fEYHeR6FezJ7-yjp5vrxXgazx4nt-PRLDaUchlbLCUzbRXJZA4JNxQzwpOcZ7kRTKZghAGrLUjOiZVGG50DZ1pkaQZZCrSPzrq_a1-9NzbUalk1vi0TFDDgIKggsqUuOsr4KgRvc7X2rtB-qwCrbxGqFaF-RLTssGM_3cpu_wfVfHT_l4i7hAu13ewS2r8pIank6vlhoqZXAtgdmasX-gXNJm0J</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1415163627</pqid></control><display><type>article</type><title>Text mining in computational advertising</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Soriano, Jacopo ; Au, Timothy ; Banks, David</creator><creatorcontrib>Soriano, Jacopo ; Au, Timothy ; Banks, David</creatorcontrib><description>Computational advertising uses information on web‐browsing activity and additional covariates to select advertisements for display to the user. The statistical challenge is to develop methodology that matches ads to users who are likely to purchase the advertised product. These methods not only involve text mining, but also may draw upon additional modeling related to both the user and the advertisement. This paper reviews various aspects of text mining, including n‐grams, topic modeling, and text networks, and discusses different strategies in the context of specific business models. © 2013 Wiley Periodicals, Inc. Statistical Analysis and Data Mining, 2013</description><identifier>ISSN: 1932-1864</identifier><identifier>EISSN: 1932-1872</identifier><identifier>DOI: 10.1002/sam.11197</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc., A Wiley Company</publisher><subject>LDA ; LSI ; networks ; recommender system ; text mining ; topic model</subject><ispartof>Statistical analysis and data mining, 2013-08, Vol.6 (4), p.273-285</ispartof><rights>Copyright © 2010 Wiley Periodicals, Inc., A Wiley Company</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3357-e0774c100747f195c304259f5dfc647b1c6c1eae17552e7cacaf154a6dbd1db13</citedby><cites>FETCH-LOGICAL-c3357-e0774c100747f195c304259f5dfc647b1c6c1eae17552e7cacaf154a6dbd1db13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Soriano, Jacopo</creatorcontrib><creatorcontrib>Au, Timothy</creatorcontrib><creatorcontrib>Banks, David</creatorcontrib><title>Text mining in computational advertising</title><title>Statistical analysis and data mining</title><addtitle>Statistical Analy Data Mining</addtitle><description>Computational advertising uses information on web‐browsing activity and additional covariates to select advertisements for display to the user. The statistical challenge is to develop methodology that matches ads to users who are likely to purchase the advertised product. These methods not only involve text mining, but also may draw upon additional modeling related to both the user and the advertisement. This paper reviews various aspects of text mining, including n‐grams, topic modeling, and text networks, and discusses different strategies in the context of specific business models. © 2013 Wiley Periodicals, Inc. Statistical Analysis and Data Mining, 2013</description><subject>LDA</subject><subject>LSI</subject><subject>networks</subject><subject>recommender system</subject><subject>text mining</subject><subject>topic model</subject><issn>1932-1864</issn><issn>1932-1872</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNp1kD1PwzAQhi0EEqUw8A8iscCQ1udPMpYKWlCBoUVILJbjOMilSYqdQPvvCQS6Md1J97ynVw9Cp4AHgDEZBl0MACCRe6gHCSUxXEqyv9sFO0RHISwx5gID66Hzhd3UUeFKV75GroxMVaybWteuKvUq0tmH9bUL7fEYHeR6FezJ7-yjp5vrxXgazx4nt-PRLDaUchlbLCUzbRXJZA4JNxQzwpOcZ7kRTKZghAGrLUjOiZVGG50DZ1pkaQZZCrSPzrq_a1-9NzbUalk1vi0TFDDgIKggsqUuOsr4KgRvc7X2rtB-qwCrbxGqFaF-RLTssGM_3cpu_wfVfHT_l4i7hAu13ewS2r8pIank6vlhoqZXAtgdmasX-gXNJm0J</recordid><startdate>201308</startdate><enddate>201308</enddate><creator>Soriano, Jacopo</creator><creator>Au, Timothy</creator><creator>Banks, David</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>201308</creationdate><title>Text mining in computational advertising</title><author>Soriano, Jacopo ; Au, Timothy ; Banks, David</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3357-e0774c100747f195c304259f5dfc647b1c6c1eae17552e7cacaf154a6dbd1db13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>LDA</topic><topic>LSI</topic><topic>networks</topic><topic>recommender system</topic><topic>text mining</topic><topic>topic model</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Soriano, Jacopo</creatorcontrib><creatorcontrib>Au, Timothy</creatorcontrib><creatorcontrib>Banks, David</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><jtitle>Statistical analysis and data mining</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Soriano, Jacopo</au><au>Au, Timothy</au><au>Banks, David</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Text mining in computational advertising</atitle><jtitle>Statistical analysis and data mining</jtitle><addtitle>Statistical Analy Data Mining</addtitle><date>2013-08</date><risdate>2013</risdate><volume>6</volume><issue>4</issue><spage>273</spage><epage>285</epage><pages>273-285</pages><issn>1932-1864</issn><eissn>1932-1872</eissn><abstract>Computational advertising uses information on web‐browsing activity and additional covariates to select advertisements for display to the user. The statistical challenge is to develop methodology that matches ads to users who are likely to purchase the advertised product. These methods not only involve text mining, but also may draw upon additional modeling related to both the user and the advertisement. This paper reviews various aspects of text mining, including n‐grams, topic modeling, and text networks, and discusses different strategies in the context of specific business models. © 2013 Wiley Periodicals, Inc. Statistical Analysis and Data Mining, 2013</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><doi>10.1002/sam.11197</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1932-1864
ispartof Statistical analysis and data mining, 2013-08, Vol.6 (4), p.273-285
issn 1932-1864
1932-1872
language eng
recordid cdi_proquest_journals_1415163627
source Wiley-Blackwell Read & Publish Collection
subjects LDA
LSI
networks
recommender system
text mining
topic model
title Text mining in computational advertising
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T06%3A43%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Text%20mining%20in%20computational%20advertising&rft.jtitle=Statistical%20analysis%20and%20data%20mining&rft.au=Soriano,%20Jacopo&rft.date=2013-08&rft.volume=6&rft.issue=4&rft.spage=273&rft.epage=285&rft.pages=273-285&rft.issn=1932-1864&rft.eissn=1932-1872&rft_id=info:doi/10.1002/sam.11197&rft_dat=%3Cproquest_cross%3E3031678411%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3357-e0774c100747f195c304259f5dfc647b1c6c1eae17552e7cacaf154a6dbd1db13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1415163627&rft_id=info:pmid/&rfr_iscdi=true