Loading…
EIGENVALUE LOCALIZATION REFINEMENTS FOR MATRICES RELATED TO POSITIVITY
Eigenvalue localization results and methods for matrices with constant row or column sum are provided, together with the numerical examples that show the efficiency of the proposed methods. The extension of the results to other classes of matrices is additionally analyzed. [PUBLICATION ABSTRACT]
Saved in:
Published in: | SIAM journal on matrix analysis and applications 2011-07, Vol.32 (3), p.771-784 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c287t-9b02b9925db31de47447e1f3eebc698c30a0818db9c1393d0d0744b150271f033 |
---|---|
cites | cdi_FETCH-LOGICAL-c287t-9b02b9925db31de47447e1f3eebc698c30a0818db9c1393d0d0744b150271f033 |
container_end_page | 784 |
container_issue | 3 |
container_start_page | 771 |
container_title | SIAM journal on matrix analysis and applications |
container_volume | 32 |
creator | CVETKOVIC, Lj KOSTIC, V PENA, J. M |
description | Eigenvalue localization results and methods for matrices with constant row or column sum are provided, together with the numerical examples that show the efficiency of the proposed methods. The extension of the results to other classes of matrices is additionally analyzed. [PUBLICATION ABSTRACT] |
doi_str_mv | 10.1137/100807077 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1415825844</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3032934001</sourcerecordid><originalsourceid>FETCH-LOGICAL-c287t-9b02b9925db31de47447e1f3eebc698c30a0818db9c1393d0d0744b150271f033</originalsourceid><addsrcrecordid>eNo9kE1Lw0AQhhdRsFYP_oOAePAQndndZHePoW7qQppIuy3oJeQTWmpbs-3Bf99IS08zMM_7DLyEPCK8IjLxhgASBAhxRQYIKvAFhvSaDED2OxdK3pI751YAGHKFAxJrM9bpIkrm2kuyUZSY78iaLPWmOjapnujUzrw4m3qTyE7NSM_6QxJZ_e7ZzPvMZsaahbFf9-SmLdaueTjPIZnH2o4-_CQbm97qV1SKva9KoKVSNKhLhnXDBeeiwZY1TVmFSlYMCpAo61JVyBSroYYeKTEAKrAFxobk6eTdddvfQ-P2-Wp76Db9yxw5BpIGkvOeejlRVbd1rmvafNctf4ruL0fI_2vKLzX17PPZWLiqWLddsamW7hKgAZWBDBU7Amw8XkI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1415825844</pqid></control><display><type>article</type><title>EIGENVALUE LOCALIZATION REFINEMENTS FOR MATRICES RELATED TO POSITIVITY</title><source>EBSCOhost Business Source Ultimate</source><source>SIAM Journals Online</source><source>ABI/INFORM Global (ProQuest)</source><creator>CVETKOVIC, Lj ; KOSTIC, V ; PENA, J. M</creator><creatorcontrib>CVETKOVIC, Lj ; KOSTIC, V ; PENA, J. M</creatorcontrib><description>Eigenvalue localization results and methods for matrices with constant row or column sum are provided, together with the numerical examples that show the efficiency of the proposed methods. The extension of the results to other classes of matrices is additionally analyzed. [PUBLICATION ABSTRACT]</description><identifier>ISSN: 0895-4798</identifier><identifier>EISSN: 1095-7162</identifier><identifier>DOI: 10.1137/100807077</identifier><identifier>CODEN: SJMAEL</identifier><language>eng</language><publisher>Philadelphia, PA: Society for Industrial and Applied Mathematics</publisher><subject>Algebra ; Eigenvalues ; Exact sciences and technology ; Linear and multilinear algebra, matrix theory ; Localization ; Mathematics ; Matrix ; Nonlinear algebraic and transcendental equations ; Numerical analysis ; Numerical analysis. Scientific computation ; Numerical linear algebra ; Sciences and techniques of general use</subject><ispartof>SIAM journal on matrix analysis and applications, 2011-07, Vol.32 (3), p.771-784</ispartof><rights>2015 INIST-CNRS</rights><rights>Copyright © 2011 Society for Industrial and Applied Mathematics</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c287t-9b02b9925db31de47447e1f3eebc698c30a0818db9c1393d0d0744b150271f033</citedby><cites>FETCH-LOGICAL-c287t-9b02b9925db31de47447e1f3eebc698c30a0818db9c1393d0d0744b150271f033</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/1415825844?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,3185,11688,27924,27925,36060,44363</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=25285869$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>CVETKOVIC, Lj</creatorcontrib><creatorcontrib>KOSTIC, V</creatorcontrib><creatorcontrib>PENA, J. M</creatorcontrib><title>EIGENVALUE LOCALIZATION REFINEMENTS FOR MATRICES RELATED TO POSITIVITY</title><title>SIAM journal on matrix analysis and applications</title><description>Eigenvalue localization results and methods for matrices with constant row or column sum are provided, together with the numerical examples that show the efficiency of the proposed methods. The extension of the results to other classes of matrices is additionally analyzed. [PUBLICATION ABSTRACT]</description><subject>Algebra</subject><subject>Eigenvalues</subject><subject>Exact sciences and technology</subject><subject>Linear and multilinear algebra, matrix theory</subject><subject>Localization</subject><subject>Mathematics</subject><subject>Matrix</subject><subject>Nonlinear algebraic and transcendental equations</subject><subject>Numerical analysis</subject><subject>Numerical analysis. Scientific computation</subject><subject>Numerical linear algebra</subject><subject>Sciences and techniques of general use</subject><issn>0895-4798</issn><issn>1095-7162</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>M0C</sourceid><recordid>eNo9kE1Lw0AQhhdRsFYP_oOAePAQndndZHePoW7qQppIuy3oJeQTWmpbs-3Bf99IS08zMM_7DLyEPCK8IjLxhgASBAhxRQYIKvAFhvSaDED2OxdK3pI751YAGHKFAxJrM9bpIkrm2kuyUZSY78iaLPWmOjapnujUzrw4m3qTyE7NSM_6QxJZ_e7ZzPvMZsaahbFf9-SmLdaueTjPIZnH2o4-_CQbm97qV1SKva9KoKVSNKhLhnXDBeeiwZY1TVmFSlYMCpAo61JVyBSroYYeKTEAKrAFxobk6eTdddvfQ-P2-Wp76Db9yxw5BpIGkvOeejlRVbd1rmvafNctf4ruL0fI_2vKLzX17PPZWLiqWLddsamW7hKgAZWBDBU7Amw8XkI</recordid><startdate>20110701</startdate><enddate>20110701</enddate><creator>CVETKOVIC, Lj</creator><creator>KOSTIC, V</creator><creator>PENA, J. M</creator><general>Society for Industrial and Applied Mathematics</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X2</scope><scope>7XB</scope><scope>87Z</scope><scope>88A</scope><scope>88F</scope><scope>88I</scope><scope>88K</scope><scope>8AL</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KB.</scope><scope>L.-</scope><scope>L6V</scope><scope>LK8</scope><scope>M0C</scope><scope>M0K</scope><scope>M0N</scope><scope>M1Q</scope><scope>M2O</scope><scope>M2P</scope><scope>M2T</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope></search><sort><creationdate>20110701</creationdate><title>EIGENVALUE LOCALIZATION REFINEMENTS FOR MATRICES RELATED TO POSITIVITY</title><author>CVETKOVIC, Lj ; KOSTIC, V ; PENA, J. M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c287t-9b02b9925db31de47447e1f3eebc698c30a0818db9c1393d0d0744b150271f033</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Algebra</topic><topic>Eigenvalues</topic><topic>Exact sciences and technology</topic><topic>Linear and multilinear algebra, matrix theory</topic><topic>Localization</topic><topic>Mathematics</topic><topic>Matrix</topic><topic>Nonlinear algebraic and transcendental equations</topic><topic>Numerical analysis</topic><topic>Numerical analysis. Scientific computation</topic><topic>Numerical linear algebra</topic><topic>Sciences and techniques of general use</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>CVETKOVIC, Lj</creatorcontrib><creatorcontrib>KOSTIC, V</creatorcontrib><creatorcontrib>PENA, J. M</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Telecommunications (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer science database</collection><collection>Materials Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>Biological Sciences</collection><collection>ABI/INFORM Global (ProQuest)</collection><collection>Agriculture Science Database</collection><collection>Computing Database</collection><collection>Military Database</collection><collection>ProQuest research library</collection><collection>ProQuest Science Journals</collection><collection>Telecommunications Database</collection><collection>ProQuest Biological Science Journals</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Materials science collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><jtitle>SIAM journal on matrix analysis and applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>CVETKOVIC, Lj</au><au>KOSTIC, V</au><au>PENA, J. M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>EIGENVALUE LOCALIZATION REFINEMENTS FOR MATRICES RELATED TO POSITIVITY</atitle><jtitle>SIAM journal on matrix analysis and applications</jtitle><date>2011-07-01</date><risdate>2011</risdate><volume>32</volume><issue>3</issue><spage>771</spage><epage>784</epage><pages>771-784</pages><issn>0895-4798</issn><eissn>1095-7162</eissn><coden>SJMAEL</coden><abstract>Eigenvalue localization results and methods for matrices with constant row or column sum are provided, together with the numerical examples that show the efficiency of the proposed methods. The extension of the results to other classes of matrices is additionally analyzed. [PUBLICATION ABSTRACT]</abstract><cop>Philadelphia, PA</cop><pub>Society for Industrial and Applied Mathematics</pub><doi>10.1137/100807077</doi><tpages>14</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0895-4798 |
ispartof | SIAM journal on matrix analysis and applications, 2011-07, Vol.32 (3), p.771-784 |
issn | 0895-4798 1095-7162 |
language | eng |
recordid | cdi_proquest_journals_1415825844 |
source | EBSCOhost Business Source Ultimate; SIAM Journals Online; ABI/INFORM Global (ProQuest) |
subjects | Algebra Eigenvalues Exact sciences and technology Linear and multilinear algebra, matrix theory Localization Mathematics Matrix Nonlinear algebraic and transcendental equations Numerical analysis Numerical analysis. Scientific computation Numerical linear algebra Sciences and techniques of general use |
title | EIGENVALUE LOCALIZATION REFINEMENTS FOR MATRICES RELATED TO POSITIVITY |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T18%3A22%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=EIGENVALUE%20LOCALIZATION%20REFINEMENTS%20FOR%20MATRICES%20RELATED%20TO%20POSITIVITY&rft.jtitle=SIAM%20journal%20on%20matrix%20analysis%20and%20applications&rft.au=CVETKOVIC,%20Lj&rft.date=2011-07-01&rft.volume=32&rft.issue=3&rft.spage=771&rft.epage=784&rft.pages=771-784&rft.issn=0895-4798&rft.eissn=1095-7162&rft.coden=SJMAEL&rft_id=info:doi/10.1137/100807077&rft_dat=%3Cproquest_cross%3E3032934001%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c287t-9b02b9925db31de47447e1f3eebc698c30a0818db9c1393d0d0744b150271f033%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1415825844&rft_id=info:pmid/&rfr_iscdi=true |