Loading…

EIGENVALUE LOCALIZATION REFINEMENTS FOR MATRICES RELATED TO POSITIVITY

Eigenvalue localization results and methods for matrices with constant row or column sum are provided, together with the numerical examples that show the efficiency of the proposed methods. The extension of the results to other classes of matrices is additionally analyzed. [PUBLICATION ABSTRACT]

Saved in:
Bibliographic Details
Published in:SIAM journal on matrix analysis and applications 2011-07, Vol.32 (3), p.771-784
Main Authors: CVETKOVIC, Lj, KOSTIC, V, PENA, J. M
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c287t-9b02b9925db31de47447e1f3eebc698c30a0818db9c1393d0d0744b150271f033
cites cdi_FETCH-LOGICAL-c287t-9b02b9925db31de47447e1f3eebc698c30a0818db9c1393d0d0744b150271f033
container_end_page 784
container_issue 3
container_start_page 771
container_title SIAM journal on matrix analysis and applications
container_volume 32
creator CVETKOVIC, Lj
KOSTIC, V
PENA, J. M
description Eigenvalue localization results and methods for matrices with constant row or column sum are provided, together with the numerical examples that show the efficiency of the proposed methods. The extension of the results to other classes of matrices is additionally analyzed. [PUBLICATION ABSTRACT]
doi_str_mv 10.1137/100807077
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1415825844</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3032934001</sourcerecordid><originalsourceid>FETCH-LOGICAL-c287t-9b02b9925db31de47447e1f3eebc698c30a0818db9c1393d0d0744b150271f033</originalsourceid><addsrcrecordid>eNo9kE1Lw0AQhhdRsFYP_oOAePAQndndZHePoW7qQppIuy3oJeQTWmpbs-3Bf99IS08zMM_7DLyEPCK8IjLxhgASBAhxRQYIKvAFhvSaDED2OxdK3pI751YAGHKFAxJrM9bpIkrm2kuyUZSY78iaLPWmOjapnujUzrw4m3qTyE7NSM_6QxJZ_e7ZzPvMZsaahbFf9-SmLdaueTjPIZnH2o4-_CQbm97qV1SKva9KoKVSNKhLhnXDBeeiwZY1TVmFSlYMCpAo61JVyBSroYYeKTEAKrAFxobk6eTdddvfQ-P2-Wp76Db9yxw5BpIGkvOeejlRVbd1rmvafNctf4ruL0fI_2vKLzX17PPZWLiqWLddsamW7hKgAZWBDBU7Amw8XkI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1415825844</pqid></control><display><type>article</type><title>EIGENVALUE LOCALIZATION REFINEMENTS FOR MATRICES RELATED TO POSITIVITY</title><source>EBSCOhost Business Source Ultimate</source><source>SIAM Journals Online</source><source>ABI/INFORM Global (ProQuest)</source><creator>CVETKOVIC, Lj ; KOSTIC, V ; PENA, J. M</creator><creatorcontrib>CVETKOVIC, Lj ; KOSTIC, V ; PENA, J. M</creatorcontrib><description>Eigenvalue localization results and methods for matrices with constant row or column sum are provided, together with the numerical examples that show the efficiency of the proposed methods. The extension of the results to other classes of matrices is additionally analyzed. [PUBLICATION ABSTRACT]</description><identifier>ISSN: 0895-4798</identifier><identifier>EISSN: 1095-7162</identifier><identifier>DOI: 10.1137/100807077</identifier><identifier>CODEN: SJMAEL</identifier><language>eng</language><publisher>Philadelphia, PA: Society for Industrial and Applied Mathematics</publisher><subject>Algebra ; Eigenvalues ; Exact sciences and technology ; Linear and multilinear algebra, matrix theory ; Localization ; Mathematics ; Matrix ; Nonlinear algebraic and transcendental equations ; Numerical analysis ; Numerical analysis. Scientific computation ; Numerical linear algebra ; Sciences and techniques of general use</subject><ispartof>SIAM journal on matrix analysis and applications, 2011-07, Vol.32 (3), p.771-784</ispartof><rights>2015 INIST-CNRS</rights><rights>Copyright © 2011 Society for Industrial and Applied Mathematics</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c287t-9b02b9925db31de47447e1f3eebc698c30a0818db9c1393d0d0744b150271f033</citedby><cites>FETCH-LOGICAL-c287t-9b02b9925db31de47447e1f3eebc698c30a0818db9c1393d0d0744b150271f033</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/1415825844?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,3185,11688,27924,27925,36060,44363</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=25285869$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>CVETKOVIC, Lj</creatorcontrib><creatorcontrib>KOSTIC, V</creatorcontrib><creatorcontrib>PENA, J. M</creatorcontrib><title>EIGENVALUE LOCALIZATION REFINEMENTS FOR MATRICES RELATED TO POSITIVITY</title><title>SIAM journal on matrix analysis and applications</title><description>Eigenvalue localization results and methods for matrices with constant row or column sum are provided, together with the numerical examples that show the efficiency of the proposed methods. The extension of the results to other classes of matrices is additionally analyzed. [PUBLICATION ABSTRACT]</description><subject>Algebra</subject><subject>Eigenvalues</subject><subject>Exact sciences and technology</subject><subject>Linear and multilinear algebra, matrix theory</subject><subject>Localization</subject><subject>Mathematics</subject><subject>Matrix</subject><subject>Nonlinear algebraic and transcendental equations</subject><subject>Numerical analysis</subject><subject>Numerical analysis. Scientific computation</subject><subject>Numerical linear algebra</subject><subject>Sciences and techniques of general use</subject><issn>0895-4798</issn><issn>1095-7162</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>M0C</sourceid><recordid>eNo9kE1Lw0AQhhdRsFYP_oOAePAQndndZHePoW7qQppIuy3oJeQTWmpbs-3Bf99IS08zMM_7DLyEPCK8IjLxhgASBAhxRQYIKvAFhvSaDED2OxdK3pI751YAGHKFAxJrM9bpIkrm2kuyUZSY78iaLPWmOjapnujUzrw4m3qTyE7NSM_6QxJZ_e7ZzPvMZsaahbFf9-SmLdaueTjPIZnH2o4-_CQbm97qV1SKva9KoKVSNKhLhnXDBeeiwZY1TVmFSlYMCpAo61JVyBSroYYeKTEAKrAFxobk6eTdddvfQ-P2-Wp76Db9yxw5BpIGkvOeejlRVbd1rmvafNctf4ruL0fI_2vKLzX17PPZWLiqWLddsamW7hKgAZWBDBU7Amw8XkI</recordid><startdate>20110701</startdate><enddate>20110701</enddate><creator>CVETKOVIC, Lj</creator><creator>KOSTIC, V</creator><creator>PENA, J. M</creator><general>Society for Industrial and Applied Mathematics</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X2</scope><scope>7XB</scope><scope>87Z</scope><scope>88A</scope><scope>88F</scope><scope>88I</scope><scope>88K</scope><scope>8AL</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KB.</scope><scope>L.-</scope><scope>L6V</scope><scope>LK8</scope><scope>M0C</scope><scope>M0K</scope><scope>M0N</scope><scope>M1Q</scope><scope>M2O</scope><scope>M2P</scope><scope>M2T</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope></search><sort><creationdate>20110701</creationdate><title>EIGENVALUE LOCALIZATION REFINEMENTS FOR MATRICES RELATED TO POSITIVITY</title><author>CVETKOVIC, Lj ; KOSTIC, V ; PENA, J. M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c287t-9b02b9925db31de47447e1f3eebc698c30a0818db9c1393d0d0744b150271f033</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Algebra</topic><topic>Eigenvalues</topic><topic>Exact sciences and technology</topic><topic>Linear and multilinear algebra, matrix theory</topic><topic>Localization</topic><topic>Mathematics</topic><topic>Matrix</topic><topic>Nonlinear algebraic and transcendental equations</topic><topic>Numerical analysis</topic><topic>Numerical analysis. Scientific computation</topic><topic>Numerical linear algebra</topic><topic>Sciences and techniques of general use</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>CVETKOVIC, Lj</creatorcontrib><creatorcontrib>KOSTIC, V</creatorcontrib><creatorcontrib>PENA, J. M</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Telecommunications (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer science database</collection><collection>Materials Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>Biological Sciences</collection><collection>ABI/INFORM Global (ProQuest)</collection><collection>Agriculture Science Database</collection><collection>Computing Database</collection><collection>Military Database</collection><collection>ProQuest research library</collection><collection>ProQuest Science Journals</collection><collection>Telecommunications Database</collection><collection>ProQuest Biological Science Journals</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Materials science collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><jtitle>SIAM journal on matrix analysis and applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>CVETKOVIC, Lj</au><au>KOSTIC, V</au><au>PENA, J. M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>EIGENVALUE LOCALIZATION REFINEMENTS FOR MATRICES RELATED TO POSITIVITY</atitle><jtitle>SIAM journal on matrix analysis and applications</jtitle><date>2011-07-01</date><risdate>2011</risdate><volume>32</volume><issue>3</issue><spage>771</spage><epage>784</epage><pages>771-784</pages><issn>0895-4798</issn><eissn>1095-7162</eissn><coden>SJMAEL</coden><abstract>Eigenvalue localization results and methods for matrices with constant row or column sum are provided, together with the numerical examples that show the efficiency of the proposed methods. The extension of the results to other classes of matrices is additionally analyzed. [PUBLICATION ABSTRACT]</abstract><cop>Philadelphia, PA</cop><pub>Society for Industrial and Applied Mathematics</pub><doi>10.1137/100807077</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0895-4798
ispartof SIAM journal on matrix analysis and applications, 2011-07, Vol.32 (3), p.771-784
issn 0895-4798
1095-7162
language eng
recordid cdi_proquest_journals_1415825844
source EBSCOhost Business Source Ultimate; SIAM Journals Online; ABI/INFORM Global (ProQuest)
subjects Algebra
Eigenvalues
Exact sciences and technology
Linear and multilinear algebra, matrix theory
Localization
Mathematics
Matrix
Nonlinear algebraic and transcendental equations
Numerical analysis
Numerical analysis. Scientific computation
Numerical linear algebra
Sciences and techniques of general use
title EIGENVALUE LOCALIZATION REFINEMENTS FOR MATRICES RELATED TO POSITIVITY
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T18%3A22%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=EIGENVALUE%20LOCALIZATION%20REFINEMENTS%20FOR%20MATRICES%20RELATED%20TO%20POSITIVITY&rft.jtitle=SIAM%20journal%20on%20matrix%20analysis%20and%20applications&rft.au=CVETKOVIC,%20Lj&rft.date=2011-07-01&rft.volume=32&rft.issue=3&rft.spage=771&rft.epage=784&rft.pages=771-784&rft.issn=0895-4798&rft.eissn=1095-7162&rft.coden=SJMAEL&rft_id=info:doi/10.1137/100807077&rft_dat=%3Cproquest_cross%3E3032934001%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c287t-9b02b9925db31de47447e1f3eebc698c30a0818db9c1393d0d0744b150271f033%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1415825844&rft_id=info:pmid/&rfr_iscdi=true