Loading…

Comparison and Automated Selection of Local Optimization Solvers for Interval Global Optimization Methods

We compare six state-of-the-art local optimization solvers, with a focus on their efficiency when invoked within an interval-based global optimization algorithm. For comparison purposes we design three special performance indicators: a solution check indicator (measuring whether the local minimizers...

Full description

Saved in:
Bibliographic Details
Published in:SIAM journal on optimization 2011-10, Vol.21 (4), p.1371-1391
Main Authors: Markót, Mihály Csaba, Schichl, Hermann
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c257t-2611afb93ae21f345472b104e722e52f6711536136ad17aa7d896dea42f73d043
cites cdi_FETCH-LOGICAL-c257t-2611afb93ae21f345472b104e722e52f6711536136ad17aa7d896dea42f73d043
container_end_page 1391
container_issue 4
container_start_page 1371
container_title SIAM journal on optimization
container_volume 21
creator Markót, Mihály Csaba
Schichl, Hermann
description We compare six state-of-the-art local optimization solvers, with a focus on their efficiency when invoked within an interval-based global optimization algorithm. For comparison purposes we design three special performance indicators: a solution check indicator (measuring whether the local minimizers found are good candidates for near-optimal verified feasible points), a function value indicator (measuring the contribution to the progress of the global search), and a running time indicator (estimating the computational cost of the local search within the global search). The solvers are compared on the COCONUT Environment test set consisting of 1307 problems. Our main goal is to predict the behavior of the solvers in terms of the three performance indicators on a new problem. For this we introduce a k-nearest neighbor method applied over a feature space consisting of several categorical and numerical features of the optimization problems. The quality and robustness of the prediction is demonstrated by various quality measurements with detailed comparative tests. In particular, we found that on the test set we are able to pick a "best" solver in 66-89% of the cases and avoid picking all "useless" solvers in 95-99% of the cases (when a useful alternative exists). The resulting automated solver selection method is implemented as an inference engine of the COCONUT Environment. [PUBLICATION ABSTRACT]
doi_str_mv 10.1137/100793530
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1415826783</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3032934241</sourcerecordid><originalsourceid>FETCH-LOGICAL-c257t-2611afb93ae21f345472b104e722e52f6711536136ad17aa7d896dea42f73d043</originalsourceid><addsrcrecordid>eNpdkE9LAzEUxIMoWKsHv0HAk4fVvPzdPZaitVDpoXpe0k2CW3Y3a5It6Kfv1ooHT28YfszwBqFbIA8ATD0CIapggpEzNAFSiExBXpwftaCZpIxfoqsYd4SQvJD5BNVz3_Y61NF3WHcGz4bkW52swRvb2CrVo-8dXvlKN3jdp7qtv_WPu_HN3oaInQ942SUb9iOxaPz2P_hq04c38RpdON1Ee_N7p-j9-elt_pKt1ovlfLbKKipUyqgE0G5bMG0pOMYFV3QLhFtFqRXUSQUgmAQmtQGltTLjI8ZqTp1ihnA2RXen3D74z8HGVO78ELqxsgQOIqdS5Wyk7k9UFXyMwbqyD3Wrw1cJpDwuWf4tyQ7s82VQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1415826783</pqid></control><display><type>article</type><title>Comparison and Automated Selection of Local Optimization Solvers for Interval Global Optimization Methods</title><source>ABI/INFORM Global</source><source>LOCUS - SIAM's Online Journal Archive</source><creator>Markót, Mihály Csaba ; Schichl, Hermann</creator><creatorcontrib>Markót, Mihály Csaba ; Schichl, Hermann</creatorcontrib><description>We compare six state-of-the-art local optimization solvers, with a focus on their efficiency when invoked within an interval-based global optimization algorithm. For comparison purposes we design three special performance indicators: a solution check indicator (measuring whether the local minimizers found are good candidates for near-optimal verified feasible points), a function value indicator (measuring the contribution to the progress of the global search), and a running time indicator (estimating the computational cost of the local search within the global search). The solvers are compared on the COCONUT Environment test set consisting of 1307 problems. Our main goal is to predict the behavior of the solvers in terms of the three performance indicators on a new problem. For this we introduce a k-nearest neighbor method applied over a feature space consisting of several categorical and numerical features of the optimization problems. The quality and robustness of the prediction is demonstrated by various quality measurements with detailed comparative tests. In particular, we found that on the test set we are able to pick a "best" solver in 66-89% of the cases and avoid picking all "useless" solvers in 95-99% of the cases (when a useful alternative exists). The resulting automated solver selection method is implemented as an inference engine of the COCONUT Environment. [PUBLICATION ABSTRACT]</description><identifier>ISSN: 1052-6234</identifier><identifier>EISSN: 1095-7189</identifier><identifier>DOI: 10.1137/100793530</identifier><language>eng</language><publisher>Philadelphia: Society for Industrial and Applied Mathematics</publisher><subject>Applied mathematics ; Automation ; Business metrics ; Engines ; Interfaces ; Methods ; Open source software ; Optimization</subject><ispartof>SIAM journal on optimization, 2011-10, Vol.21 (4), p.1371-1391</ispartof><rights>Copyright © 2011 Society for Industrial and Applied Mathematics</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c257t-2611afb93ae21f345472b104e722e52f6711536136ad17aa7d896dea42f73d043</citedby><cites>FETCH-LOGICAL-c257t-2611afb93ae21f345472b104e722e52f6711536136ad17aa7d896dea42f73d043</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/1415826783?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,776,780,3171,11668,27903,27904,36039,44342</link.rule.ids></links><search><creatorcontrib>Markót, Mihály Csaba</creatorcontrib><creatorcontrib>Schichl, Hermann</creatorcontrib><title>Comparison and Automated Selection of Local Optimization Solvers for Interval Global Optimization Methods</title><title>SIAM journal on optimization</title><description>We compare six state-of-the-art local optimization solvers, with a focus on their efficiency when invoked within an interval-based global optimization algorithm. For comparison purposes we design three special performance indicators: a solution check indicator (measuring whether the local minimizers found are good candidates for near-optimal verified feasible points), a function value indicator (measuring the contribution to the progress of the global search), and a running time indicator (estimating the computational cost of the local search within the global search). The solvers are compared on the COCONUT Environment test set consisting of 1307 problems. Our main goal is to predict the behavior of the solvers in terms of the three performance indicators on a new problem. For this we introduce a k-nearest neighbor method applied over a feature space consisting of several categorical and numerical features of the optimization problems. The quality and robustness of the prediction is demonstrated by various quality measurements with detailed comparative tests. In particular, we found that on the test set we are able to pick a "best" solver in 66-89% of the cases and avoid picking all "useless" solvers in 95-99% of the cases (when a useful alternative exists). The resulting automated solver selection method is implemented as an inference engine of the COCONUT Environment. [PUBLICATION ABSTRACT]</description><subject>Applied mathematics</subject><subject>Automation</subject><subject>Business metrics</subject><subject>Engines</subject><subject>Interfaces</subject><subject>Methods</subject><subject>Open source software</subject><subject>Optimization</subject><issn>1052-6234</issn><issn>1095-7189</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>M0C</sourceid><recordid>eNpdkE9LAzEUxIMoWKsHv0HAk4fVvPzdPZaitVDpoXpe0k2CW3Y3a5It6Kfv1ooHT28YfszwBqFbIA8ATD0CIapggpEzNAFSiExBXpwftaCZpIxfoqsYd4SQvJD5BNVz3_Y61NF3WHcGz4bkW52swRvb2CrVo-8dXvlKN3jdp7qtv_WPu_HN3oaInQ942SUb9iOxaPz2P_hq04c38RpdON1Ee_N7p-j9-elt_pKt1ovlfLbKKipUyqgE0G5bMG0pOMYFV3QLhFtFqRXUSQUgmAQmtQGltTLjI8ZqTp1ihnA2RXen3D74z8HGVO78ELqxsgQOIqdS5Wyk7k9UFXyMwbqyD3Wrw1cJpDwuWf4tyQ7s82VQ</recordid><startdate>20111001</startdate><enddate>20111001</enddate><creator>Markót, Mihály Csaba</creator><creator>Schichl, Hermann</creator><general>Society for Industrial and Applied Mathematics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7RQ</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X2</scope><scope>7XB</scope><scope>87Z</scope><scope>88A</scope><scope>88F</scope><scope>88I</scope><scope>88K</scope><scope>8AL</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KB.</scope><scope>L.-</scope><scope>L6V</scope><scope>LK8</scope><scope>M0C</scope><scope>M0K</scope><scope>M0N</scope><scope>M1Q</scope><scope>M2O</scope><scope>M2P</scope><scope>M2T</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>U9A</scope></search><sort><creationdate>20111001</creationdate><title>Comparison and Automated Selection of Local Optimization Solvers for Interval Global Optimization Methods</title><author>Markót, Mihály Csaba ; Schichl, Hermann</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c257t-2611afb93ae21f345472b104e722e52f6711536136ad17aa7d896dea42f73d043</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Applied mathematics</topic><topic>Automation</topic><topic>Business metrics</topic><topic>Engines</topic><topic>Interfaces</topic><topic>Methods</topic><topic>Open source software</topic><topic>Optimization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Markót, Mihály Csaba</creatorcontrib><creatorcontrib>Schichl, Hermann</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Career &amp; Technical Education Database</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection</collection><collection>Biology Database (Alumni Edition)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Telecommunications (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>Materials Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>Biological Sciences</collection><collection>ABI/INFORM Global</collection><collection>Agriculture Science Database</collection><collection>Computing Database</collection><collection>Military Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Telecommunications Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>One Business (ProQuest)</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><jtitle>SIAM journal on optimization</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Markót, Mihály Csaba</au><au>Schichl, Hermann</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Comparison and Automated Selection of Local Optimization Solvers for Interval Global Optimization Methods</atitle><jtitle>SIAM journal on optimization</jtitle><date>2011-10-01</date><risdate>2011</risdate><volume>21</volume><issue>4</issue><spage>1371</spage><epage>1391</epage><pages>1371-1391</pages><issn>1052-6234</issn><eissn>1095-7189</eissn><abstract>We compare six state-of-the-art local optimization solvers, with a focus on their efficiency when invoked within an interval-based global optimization algorithm. For comparison purposes we design three special performance indicators: a solution check indicator (measuring whether the local minimizers found are good candidates for near-optimal verified feasible points), a function value indicator (measuring the contribution to the progress of the global search), and a running time indicator (estimating the computational cost of the local search within the global search). The solvers are compared on the COCONUT Environment test set consisting of 1307 problems. Our main goal is to predict the behavior of the solvers in terms of the three performance indicators on a new problem. For this we introduce a k-nearest neighbor method applied over a feature space consisting of several categorical and numerical features of the optimization problems. The quality and robustness of the prediction is demonstrated by various quality measurements with detailed comparative tests. In particular, we found that on the test set we are able to pick a "best" solver in 66-89% of the cases and avoid picking all "useless" solvers in 95-99% of the cases (when a useful alternative exists). The resulting automated solver selection method is implemented as an inference engine of the COCONUT Environment. [PUBLICATION ABSTRACT]</abstract><cop>Philadelphia</cop><pub>Society for Industrial and Applied Mathematics</pub><doi>10.1137/100793530</doi><tpages>21</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1052-6234
ispartof SIAM journal on optimization, 2011-10, Vol.21 (4), p.1371-1391
issn 1052-6234
1095-7189
language eng
recordid cdi_proquest_journals_1415826783
source ABI/INFORM Global; LOCUS - SIAM's Online Journal Archive
subjects Applied mathematics
Automation
Business metrics
Engines
Interfaces
Methods
Open source software
Optimization
title Comparison and Automated Selection of Local Optimization Solvers for Interval Global Optimization Methods
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T00%3A12%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Comparison%20and%20Automated%20Selection%20of%20Local%20Optimization%20Solvers%20for%20Interval%20Global%20Optimization%20Methods&rft.jtitle=SIAM%20journal%20on%20optimization&rft.au=Mark%C3%B3t,%20Mih%C3%A1ly%20Csaba&rft.date=2011-10-01&rft.volume=21&rft.issue=4&rft.spage=1371&rft.epage=1391&rft.pages=1371-1391&rft.issn=1052-6234&rft.eissn=1095-7189&rft_id=info:doi/10.1137/100793530&rft_dat=%3Cproquest_cross%3E3032934241%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c257t-2611afb93ae21f345472b104e722e52f6711536136ad17aa7d896dea42f73d043%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1415826783&rft_id=info:pmid/&rfr_iscdi=true