Loading…

Optimal climate policy: Uncertainty versus Monte Carlo

The integrated assessment literature frequently replicates uncertainty by averaging Monte Carlo runs of deterministic models. This Monte Carlo analysis is, in essence, an averaged sensitivity analyses. The approach resolves all uncertainty before the first time period, drawing parameters from a dist...

Full description

Saved in:
Bibliographic Details
Published in:Economics letters 2013-09, Vol.120 (3), p.552-558
Main Authors: Crost, Benjamin, Traeger, Christian P.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c401t-9610fc106586f63de8a6a8385e9da3bb2d99f319b5d17fd8b3c0e1615679fb833
cites cdi_FETCH-LOGICAL-c401t-9610fc106586f63de8a6a8385e9da3bb2d99f319b5d17fd8b3c0e1615679fb833
container_end_page 558
container_issue 3
container_start_page 552
container_title Economics letters
container_volume 120
creator Crost, Benjamin
Traeger, Christian P.
description The integrated assessment literature frequently replicates uncertainty by averaging Monte Carlo runs of deterministic models. This Monte Carlo analysis is, in essence, an averaged sensitivity analyses. The approach resolves all uncertainty before the first time period, drawing parameters from a distribution before initiating a given model run. This paper analyzes how closely a Monte Carlo based derivation of optimal policies is to the truly optimal policy, in which the decision maker acknowledges the full set of possible future trajectories in every period. Our analysis uses a stochastic dynamic programming version of the widespread integrated assessment model DICE, and focuses on damage uncertainty. We show that the optimizing Monte Carlo approach is not only off in magnitude, but can even lead to a wrong sign of the uncertainty effect. Moreover, it can lead to contradictory policy advice, suggesting a more stringent climate policy in terms of the abatement rate and a less stringent one in terms of the expenditure on abatement. •How well can Monte-Carlo averaging of deterministic scenarios replicate optimal climate policy under uncertainty?•Answer 1: Quantitatively off.•Answer 2: Can imply the wrong sign of the uncertainty effect.•Answer 3: Can imply contradictory recommendations that depend on the depicted policy variable.•Results hold for standard preferences as well as comprehensive risk preferences.
doi_str_mv 10.1016/j.econlet.2013.05.019
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1417004512</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0165176513002565</els_id><sourcerecordid>3034843411</sourcerecordid><originalsourceid>FETCH-LOGICAL-c401t-9610fc106586f63de8a6a8385e9da3bb2d99f319b5d17fd8b3c0e1615679fb833</originalsourceid><addsrcrecordid>eNqFkE1LxDAURYMoOI7-BKHgujWvaZLGjcjgF4zMxlmHNn2FlNrUJDMw_94MM3tXd3PefdxDyD3QAiiIx6FA46YRY1FSYAXlBQV1QRZQS5ZLJqtLskgcz0EKfk1uQhgohVJJviBiM0f704yZGVNEzGY3WnN4yraTQR8bO8VDtkcfdiH7clMCVo0f3S256psx4N05l2T79vq9-sjXm_fP1cs6NxWFmCsBtDdABa9FL1iHdSOamtUcVdewti07pXoGquUdyL6rW2YoggAupOrbmrEleTj1zt797jBEPbidn9JLDRVISisOZaL4iTLeheCx17NPa_xBA9VHRXrQZ0X6qEhTrpOidPd8usM0YW_R62AspuGd9Wii7pz9p-EPvu1xKA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1417004512</pqid></control><display><type>article</type><title>Optimal climate policy: Uncertainty versus Monte Carlo</title><source>International Bibliography of the Social Sciences (IBSS)</source><source>ScienceDirect Freedom Collection 2022-2024</source><creator>Crost, Benjamin ; Traeger, Christian P.</creator><creatorcontrib>Crost, Benjamin ; Traeger, Christian P.</creatorcontrib><description>The integrated assessment literature frequently replicates uncertainty by averaging Monte Carlo runs of deterministic models. This Monte Carlo analysis is, in essence, an averaged sensitivity analyses. The approach resolves all uncertainty before the first time period, drawing parameters from a distribution before initiating a given model run. This paper analyzes how closely a Monte Carlo based derivation of optimal policies is to the truly optimal policy, in which the decision maker acknowledges the full set of possible future trajectories in every period. Our analysis uses a stochastic dynamic programming version of the widespread integrated assessment model DICE, and focuses on damage uncertainty. We show that the optimizing Monte Carlo approach is not only off in magnitude, but can even lead to a wrong sign of the uncertainty effect. Moreover, it can lead to contradictory policy advice, suggesting a more stringent climate policy in terms of the abatement rate and a less stringent one in terms of the expenditure on abatement. •How well can Monte-Carlo averaging of deterministic scenarios replicate optimal climate policy under uncertainty?•Answer 1: Quantitatively off.•Answer 2: Can imply the wrong sign of the uncertainty effect.•Answer 3: Can imply contradictory recommendations that depend on the depicted policy variable.•Results hold for standard preferences as well as comprehensive risk preferences.</description><identifier>ISSN: 0165-1765</identifier><identifier>EISSN: 1873-7374</identifier><identifier>DOI: 10.1016/j.econlet.2013.05.019</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Climate change ; Climate policy ; DICE ; Dynamic programming ; Environmental policy ; Integrated assessment ; Monte Carlo ; Monte Carlo simulation ; Risk aversion ; Stochastic models ; Studies ; Uncertainty</subject><ispartof>Economics letters, 2013-09, Vol.120 (3), p.552-558</ispartof><rights>2013</rights><rights>Copyright Elsevier Science Ltd. Sep 2013</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c401t-9610fc106586f63de8a6a8385e9da3bb2d99f319b5d17fd8b3c0e1615679fb833</citedby><cites>FETCH-LOGICAL-c401t-9610fc106586f63de8a6a8385e9da3bb2d99f319b5d17fd8b3c0e1615679fb833</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925,33223</link.rule.ids></links><search><creatorcontrib>Crost, Benjamin</creatorcontrib><creatorcontrib>Traeger, Christian P.</creatorcontrib><title>Optimal climate policy: Uncertainty versus Monte Carlo</title><title>Economics letters</title><description>The integrated assessment literature frequently replicates uncertainty by averaging Monte Carlo runs of deterministic models. This Monte Carlo analysis is, in essence, an averaged sensitivity analyses. The approach resolves all uncertainty before the first time period, drawing parameters from a distribution before initiating a given model run. This paper analyzes how closely a Monte Carlo based derivation of optimal policies is to the truly optimal policy, in which the decision maker acknowledges the full set of possible future trajectories in every period. Our analysis uses a stochastic dynamic programming version of the widespread integrated assessment model DICE, and focuses on damage uncertainty. We show that the optimizing Monte Carlo approach is not only off in magnitude, but can even lead to a wrong sign of the uncertainty effect. Moreover, it can lead to contradictory policy advice, suggesting a more stringent climate policy in terms of the abatement rate and a less stringent one in terms of the expenditure on abatement. •How well can Monte-Carlo averaging of deterministic scenarios replicate optimal climate policy under uncertainty?•Answer 1: Quantitatively off.•Answer 2: Can imply the wrong sign of the uncertainty effect.•Answer 3: Can imply contradictory recommendations that depend on the depicted policy variable.•Results hold for standard preferences as well as comprehensive risk preferences.</description><subject>Climate change</subject><subject>Climate policy</subject><subject>DICE</subject><subject>Dynamic programming</subject><subject>Environmental policy</subject><subject>Integrated assessment</subject><subject>Monte Carlo</subject><subject>Monte Carlo simulation</subject><subject>Risk aversion</subject><subject>Stochastic models</subject><subject>Studies</subject><subject>Uncertainty</subject><issn>0165-1765</issn><issn>1873-7374</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>8BJ</sourceid><recordid>eNqFkE1LxDAURYMoOI7-BKHgujWvaZLGjcjgF4zMxlmHNn2FlNrUJDMw_94MM3tXd3PefdxDyD3QAiiIx6FA46YRY1FSYAXlBQV1QRZQS5ZLJqtLskgcz0EKfk1uQhgohVJJviBiM0f704yZGVNEzGY3WnN4yraTQR8bO8VDtkcfdiH7clMCVo0f3S256psx4N05l2T79vq9-sjXm_fP1cs6NxWFmCsBtDdABa9FL1iHdSOamtUcVdewti07pXoGquUdyL6rW2YoggAupOrbmrEleTj1zt797jBEPbidn9JLDRVISisOZaL4iTLeheCx17NPa_xBA9VHRXrQZ0X6qEhTrpOidPd8usM0YW_R62AspuGd9Wii7pz9p-EPvu1xKA</recordid><startdate>20130901</startdate><enddate>20130901</enddate><creator>Crost, Benjamin</creator><creator>Traeger, Christian P.</creator><general>Elsevier B.V</general><general>Elsevier Science Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8BJ</scope><scope>FQK</scope><scope>JBE</scope></search><sort><creationdate>20130901</creationdate><title>Optimal climate policy: Uncertainty versus Monte Carlo</title><author>Crost, Benjamin ; Traeger, Christian P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c401t-9610fc106586f63de8a6a8385e9da3bb2d99f319b5d17fd8b3c0e1615679fb833</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Climate change</topic><topic>Climate policy</topic><topic>DICE</topic><topic>Dynamic programming</topic><topic>Environmental policy</topic><topic>Integrated assessment</topic><topic>Monte Carlo</topic><topic>Monte Carlo simulation</topic><topic>Risk aversion</topic><topic>Stochastic models</topic><topic>Studies</topic><topic>Uncertainty</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Crost, Benjamin</creatorcontrib><creatorcontrib>Traeger, Christian P.</creatorcontrib><collection>CrossRef</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><jtitle>Economics letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Crost, Benjamin</au><au>Traeger, Christian P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimal climate policy: Uncertainty versus Monte Carlo</atitle><jtitle>Economics letters</jtitle><date>2013-09-01</date><risdate>2013</risdate><volume>120</volume><issue>3</issue><spage>552</spage><epage>558</epage><pages>552-558</pages><issn>0165-1765</issn><eissn>1873-7374</eissn><abstract>The integrated assessment literature frequently replicates uncertainty by averaging Monte Carlo runs of deterministic models. This Monte Carlo analysis is, in essence, an averaged sensitivity analyses. The approach resolves all uncertainty before the first time period, drawing parameters from a distribution before initiating a given model run. This paper analyzes how closely a Monte Carlo based derivation of optimal policies is to the truly optimal policy, in which the decision maker acknowledges the full set of possible future trajectories in every period. Our analysis uses a stochastic dynamic programming version of the widespread integrated assessment model DICE, and focuses on damage uncertainty. We show that the optimizing Monte Carlo approach is not only off in magnitude, but can even lead to a wrong sign of the uncertainty effect. Moreover, it can lead to contradictory policy advice, suggesting a more stringent climate policy in terms of the abatement rate and a less stringent one in terms of the expenditure on abatement. •How well can Monte-Carlo averaging of deterministic scenarios replicate optimal climate policy under uncertainty?•Answer 1: Quantitatively off.•Answer 2: Can imply the wrong sign of the uncertainty effect.•Answer 3: Can imply contradictory recommendations that depend on the depicted policy variable.•Results hold for standard preferences as well as comprehensive risk preferences.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.econlet.2013.05.019</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0165-1765
ispartof Economics letters, 2013-09, Vol.120 (3), p.552-558
issn 0165-1765
1873-7374
language eng
recordid cdi_proquest_journals_1417004512
source International Bibliography of the Social Sciences (IBSS); ScienceDirect Freedom Collection 2022-2024
subjects Climate change
Climate policy
DICE
Dynamic programming
Environmental policy
Integrated assessment
Monte Carlo
Monte Carlo simulation
Risk aversion
Stochastic models
Studies
Uncertainty
title Optimal climate policy: Uncertainty versus Monte Carlo
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T03%3A45%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimal%20climate%20policy:%20Uncertainty%20versus%20Monte%20Carlo&rft.jtitle=Economics%20letters&rft.au=Crost,%20Benjamin&rft.date=2013-09-01&rft.volume=120&rft.issue=3&rft.spage=552&rft.epage=558&rft.pages=552-558&rft.issn=0165-1765&rft.eissn=1873-7374&rft_id=info:doi/10.1016/j.econlet.2013.05.019&rft_dat=%3Cproquest_cross%3E3034843411%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c401t-9610fc106586f63de8a6a8385e9da3bb2d99f319b5d17fd8b3c0e1615679fb833%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1417004512&rft_id=info:pmid/&rfr_iscdi=true