Loading…
Chicxulub impact spherules in the North Atlantic and Caribbean: age constraints and Cretaceous–Tertiary boundary hiatus
The Chicxulub impact is commonly believed to have caused the Cretaceous–Tertiary boundary mass extinction and a thin impact spherule layer in the North Atlantic and Caribbean is frequently cited as proof. We evaluated this claim in the seven best North Atlantic and Caribbean Cretaceous–Tertiary boun...
Saved in:
Published in: | Geological magazine 2013-09, Vol.150 (5), p.885-907 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-a419t-fd00b92eea916014dfa364beb18b027a0b5a78afb661d0a8326aaedb7c3e4f3c3 |
---|---|
cites | cdi_FETCH-LOGICAL-a419t-fd00b92eea916014dfa364beb18b027a0b5a78afb661d0a8326aaedb7c3e4f3c3 |
container_end_page | 907 |
container_issue | 5 |
container_start_page | 885 |
container_title | Geological magazine |
container_volume | 150 |
creator | KELLER, GERTA KHOZYEM, HASSAN ADATTE, THIERRY MALARKODI, NALLAMUTHU SPANGENBERG, JORGE E. STINNESBECK, WOLFGANG |
description | The Chicxulub impact is commonly believed to have caused the Cretaceous–Tertiary boundary mass extinction and a thin impact spherule layer in the North Atlantic and Caribbean is frequently cited as proof. We evaluated this claim in the seven best North Atlantic and Caribbean Cretaceous–Tertiary boundary sequences based on high-resolution biostratigraphy, quantitative faunal analyses and stable isotopes. Results reveal a major Cretaceous–Tertiary boundary unconformity spanning most of Danian subzone P1a(1) and Maastrichtian zones CF1–CF2 (~400 ka) in the NW Atlantic Bass River core, ODP Sites 1049A, 1049C and 1050C. In the Caribbean ODP Sites 999B and 1001B the unconformity spans from the early Danian zone P1a(1) through to zones CF1–CF4 (~3 Ma). Only in the Demerara Rise ODP Site 1259B is erosion relatively minor and restricted to the earliest Danian zone P0 and most of subzone P1a(1) (~150 ka). In all sites examined, Chicxulub impact spherules are reworked into the early Danian subzone P1a(1) about 150–200 ka after the mass extinction. A similar pattern of erosion and redeposition of impact spherules in Danian sediments has previously been documented from Cuba, Haiti, Belize, Guatemala, south and central Mexico. This pattern can be explained by intensified Gulf stream circulation at times of climate cooling and sea level changes. The age of the Chicxulub impact cannot be determined from these reworked impact spherule layers, but can be evaluated based on the stratigraphically oldest spherule layer in NE Mexico and Texas, which indicates that this impact predates the Cretaceous–Tertiary boundary by about 130–150 ka. |
doi_str_mv | 10.1017/S0016756812001069 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1418151261</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_S0016756812001069</cupid><sourcerecordid>3037969051</sourcerecordid><originalsourceid>FETCH-LOGICAL-a419t-fd00b92eea916014dfa364beb18b027a0b5a78afb661d0a8326aaedb7c3e4f3c3</originalsourceid><addsrcrecordid>eNp1UMFq3DAQFaWBbjb5gN4EPQanGtsr272FJUkLoT0kOZuRPF4reKWtJJPurf-QP8yXRGYDKYSe5g3vzbzHY-wziHMQUH29FQJktZI15AkJ2XxgCyhlk61EDR_ZYqazmf_EjkN4SGsh6nrB9uvB6D_TOClutjvUkYfdQH4aKXBjeRyI_3Q-Dvwijmij0Rxtx9fojVKE9hvHDXHtbIgejY3hQHuKqMlN4fnv0x35aNDvuXKT7WYwGIxTOGFHPY6BTl_nkt1fXd6tv2c3v65_rC9uMiyhiVnfCaGanAgbkALKrsdClooU1ErkFQq1wqrGXkkJncC6yCUidarSBZV9oYsl-3L4u_Pu90Qhtg9u8jZZtlBCDSvIJSQVHFTauxA89e3Om21K24Jo54bbdw2nm7PDzYZc0Iaspkfnx-7NIE81t0laFmVSF68OuFXedBv6J8h_PV4AqE-PdQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1418151261</pqid></control><display><type>article</type><title>Chicxulub impact spherules in the North Atlantic and Caribbean: age constraints and Cretaceous–Tertiary boundary hiatus</title><source>Cambridge Journals Online</source><creator>KELLER, GERTA ; KHOZYEM, HASSAN ; ADATTE, THIERRY ; MALARKODI, NALLAMUTHU ; SPANGENBERG, JORGE E. ; STINNESBECK, WOLFGANG</creator><creatorcontrib>KELLER, GERTA ; KHOZYEM, HASSAN ; ADATTE, THIERRY ; MALARKODI, NALLAMUTHU ; SPANGENBERG, JORGE E. ; STINNESBECK, WOLFGANG</creatorcontrib><description>The Chicxulub impact is commonly believed to have caused the Cretaceous–Tertiary boundary mass extinction and a thin impact spherule layer in the North Atlantic and Caribbean is frequently cited as proof. We evaluated this claim in the seven best North Atlantic and Caribbean Cretaceous–Tertiary boundary sequences based on high-resolution biostratigraphy, quantitative faunal analyses and stable isotopes. Results reveal a major Cretaceous–Tertiary boundary unconformity spanning most of Danian subzone P1a(1) and Maastrichtian zones CF1–CF2 (~400 ka) in the NW Atlantic Bass River core, ODP Sites 1049A, 1049C and 1050C. In the Caribbean ODP Sites 999B and 1001B the unconformity spans from the early Danian zone P1a(1) through to zones CF1–CF4 (~3 Ma). Only in the Demerara Rise ODP Site 1259B is erosion relatively minor and restricted to the earliest Danian zone P0 and most of subzone P1a(1) (~150 ka). In all sites examined, Chicxulub impact spherules are reworked into the early Danian subzone P1a(1) about 150–200 ka after the mass extinction. A similar pattern of erosion and redeposition of impact spherules in Danian sediments has previously been documented from Cuba, Haiti, Belize, Guatemala, south and central Mexico. This pattern can be explained by intensified Gulf stream circulation at times of climate cooling and sea level changes. The age of the Chicxulub impact cannot be determined from these reworked impact spherule layers, but can be evaluated based on the stratigraphically oldest spherule layer in NE Mexico and Texas, which indicates that this impact predates the Cretaceous–Tertiary boundary by about 130–150 ka.</description><identifier>ISSN: 0016-7568</identifier><identifier>EISSN: 1469-5081</identifier><identifier>DOI: 10.1017/S0016756812001069</identifier><identifier>CODEN: GEMGA4</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>assemblages ; Atlantic Ocean ; Bass River ; biostratigraphy ; Blake Nose ; Blake Plateau ; Boundary layer ; C-13/C-12 ; carbon ; Caribbean Sea ; Cenozoic ; chemostratigraphy ; Chicxulub Crater ; Colombian Basin ; Cretaceous ; currents ; Danian ; Demerara Rise ; Equatorial Atlantic ; Foraminifera ; geochemistry ; Geology ; Gulf of Mexico ; Gulf Stream ; impact craters ; impact features ; Invertebrata ; isotope ratios ; isotopes ; K-T boundary ; Leg 165 ; Leg 171B ; Leg 207 ; lower Paleocene ; Mass extinctions ; Mesozoic ; Mexico ; microfossils ; Nicaragua Rise ; North Atlantic ; Northwest Atlantic ; O-18/O-16 ; ocean circulation ; ocean currents ; Ocean Drilling Program ; ODP Site 1001 ; ODP Site 1049 ; ODP Site 1050 ; ODP Site 1259 ; ODP Site 999 ; Original Articles ; oxygen ; Paleocene ; paleoclimatology ; paleoecology ; Paleogene ; paleontology ; Protista ; Sea level changes ; spherules ; Stable isotopes ; stratigraphic boundary ; Stratigraphy ; Tertiary ; Texas ; Unconformity ; United States ; Upper Cretaceous ; West Atlantic</subject><ispartof>Geological magazine, 2013-09, Vol.150 (5), p.885-907</ispartof><rights>Copyright © Cambridge University Press 2013</rights><rights>GeoRef, Copyright 2020, American Geosciences Institute. Reference includes data from GeoScienceWorld @Alexandria, VA @USA @United States. Abstract, Copyright, Cambridge University Press</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a419t-fd00b92eea916014dfa364beb18b027a0b5a78afb661d0a8326aaedb7c3e4f3c3</citedby><cites>FETCH-LOGICAL-a419t-fd00b92eea916014dfa364beb18b027a0b5a78afb661d0a8326aaedb7c3e4f3c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0016756812001069/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,72731</link.rule.ids></links><search><creatorcontrib>KELLER, GERTA</creatorcontrib><creatorcontrib>KHOZYEM, HASSAN</creatorcontrib><creatorcontrib>ADATTE, THIERRY</creatorcontrib><creatorcontrib>MALARKODI, NALLAMUTHU</creatorcontrib><creatorcontrib>SPANGENBERG, JORGE E.</creatorcontrib><creatorcontrib>STINNESBECK, WOLFGANG</creatorcontrib><title>Chicxulub impact spherules in the North Atlantic and Caribbean: age constraints and Cretaceous–Tertiary boundary hiatus</title><title>Geological magazine</title><addtitle>Geol. Mag</addtitle><description>The Chicxulub impact is commonly believed to have caused the Cretaceous–Tertiary boundary mass extinction and a thin impact spherule layer in the North Atlantic and Caribbean is frequently cited as proof. We evaluated this claim in the seven best North Atlantic and Caribbean Cretaceous–Tertiary boundary sequences based on high-resolution biostratigraphy, quantitative faunal analyses and stable isotopes. Results reveal a major Cretaceous–Tertiary boundary unconformity spanning most of Danian subzone P1a(1) and Maastrichtian zones CF1–CF2 (~400 ka) in the NW Atlantic Bass River core, ODP Sites 1049A, 1049C and 1050C. In the Caribbean ODP Sites 999B and 1001B the unconformity spans from the early Danian zone P1a(1) through to zones CF1–CF4 (~3 Ma). Only in the Demerara Rise ODP Site 1259B is erosion relatively minor and restricted to the earliest Danian zone P0 and most of subzone P1a(1) (~150 ka). In all sites examined, Chicxulub impact spherules are reworked into the early Danian subzone P1a(1) about 150–200 ka after the mass extinction. A similar pattern of erosion and redeposition of impact spherules in Danian sediments has previously been documented from Cuba, Haiti, Belize, Guatemala, south and central Mexico. This pattern can be explained by intensified Gulf stream circulation at times of climate cooling and sea level changes. The age of the Chicxulub impact cannot be determined from these reworked impact spherule layers, but can be evaluated based on the stratigraphically oldest spherule layer in NE Mexico and Texas, which indicates that this impact predates the Cretaceous–Tertiary boundary by about 130–150 ka.</description><subject>assemblages</subject><subject>Atlantic Ocean</subject><subject>Bass River</subject><subject>biostratigraphy</subject><subject>Blake Nose</subject><subject>Blake Plateau</subject><subject>Boundary layer</subject><subject>C-13/C-12</subject><subject>carbon</subject><subject>Caribbean Sea</subject><subject>Cenozoic</subject><subject>chemostratigraphy</subject><subject>Chicxulub Crater</subject><subject>Colombian Basin</subject><subject>Cretaceous</subject><subject>currents</subject><subject>Danian</subject><subject>Demerara Rise</subject><subject>Equatorial Atlantic</subject><subject>Foraminifera</subject><subject>geochemistry</subject><subject>Geology</subject><subject>Gulf of Mexico</subject><subject>Gulf Stream</subject><subject>impact craters</subject><subject>impact features</subject><subject>Invertebrata</subject><subject>isotope ratios</subject><subject>isotopes</subject><subject>K-T boundary</subject><subject>Leg 165</subject><subject>Leg 171B</subject><subject>Leg 207</subject><subject>lower Paleocene</subject><subject>Mass extinctions</subject><subject>Mesozoic</subject><subject>Mexico</subject><subject>microfossils</subject><subject>Nicaragua Rise</subject><subject>North Atlantic</subject><subject>Northwest Atlantic</subject><subject>O-18/O-16</subject><subject>ocean circulation</subject><subject>ocean currents</subject><subject>Ocean Drilling Program</subject><subject>ODP Site 1001</subject><subject>ODP Site 1049</subject><subject>ODP Site 1050</subject><subject>ODP Site 1259</subject><subject>ODP Site 999</subject><subject>Original Articles</subject><subject>oxygen</subject><subject>Paleocene</subject><subject>paleoclimatology</subject><subject>paleoecology</subject><subject>Paleogene</subject><subject>paleontology</subject><subject>Protista</subject><subject>Sea level changes</subject><subject>spherules</subject><subject>Stable isotopes</subject><subject>stratigraphic boundary</subject><subject>Stratigraphy</subject><subject>Tertiary</subject><subject>Texas</subject><subject>Unconformity</subject><subject>United States</subject><subject>Upper Cretaceous</subject><subject>West Atlantic</subject><issn>0016-7568</issn><issn>1469-5081</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNp1UMFq3DAQFaWBbjb5gN4EPQanGtsr272FJUkLoT0kOZuRPF4reKWtJJPurf-QP8yXRGYDKYSe5g3vzbzHY-wziHMQUH29FQJktZI15AkJ2XxgCyhlk61EDR_ZYqazmf_EjkN4SGsh6nrB9uvB6D_TOClutjvUkYfdQH4aKXBjeRyI_3Q-Dvwijmij0Rxtx9fojVKE9hvHDXHtbIgejY3hQHuKqMlN4fnv0x35aNDvuXKT7WYwGIxTOGFHPY6BTl_nkt1fXd6tv2c3v65_rC9uMiyhiVnfCaGanAgbkALKrsdClooU1ErkFQq1wqrGXkkJncC6yCUidarSBZV9oYsl-3L4u_Pu90Qhtg9u8jZZtlBCDSvIJSQVHFTauxA89e3Om21K24Jo54bbdw2nm7PDzYZc0Iaspkfnx-7NIE81t0laFmVSF68OuFXedBv6J8h_PV4AqE-PdQ</recordid><startdate>20130901</startdate><enddate>20130901</enddate><creator>KELLER, GERTA</creator><creator>KHOZYEM, HASSAN</creator><creator>ADATTE, THIERRY</creator><creator>MALARKODI, NALLAMUTHU</creator><creator>SPANGENBERG, JORGE E.</creator><creator>STINNESBECK, WOLFGANG</creator><general>Cambridge University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7UA</scope><scope>7XB</scope><scope>88I</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H96</scope><scope>HCIFZ</scope><scope>L.G</scope><scope>L6V</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>R05</scope></search><sort><creationdate>20130901</creationdate><title>Chicxulub impact spherules in the North Atlantic and Caribbean: age constraints and Cretaceous–Tertiary boundary hiatus</title><author>KELLER, GERTA ; KHOZYEM, HASSAN ; ADATTE, THIERRY ; MALARKODI, NALLAMUTHU ; SPANGENBERG, JORGE E. ; STINNESBECK, WOLFGANG</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a419t-fd00b92eea916014dfa364beb18b027a0b5a78afb661d0a8326aaedb7c3e4f3c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>assemblages</topic><topic>Atlantic Ocean</topic><topic>Bass River</topic><topic>biostratigraphy</topic><topic>Blake Nose</topic><topic>Blake Plateau</topic><topic>Boundary layer</topic><topic>C-13/C-12</topic><topic>carbon</topic><topic>Caribbean Sea</topic><topic>Cenozoic</topic><topic>chemostratigraphy</topic><topic>Chicxulub Crater</topic><topic>Colombian Basin</topic><topic>Cretaceous</topic><topic>currents</topic><topic>Danian</topic><topic>Demerara Rise</topic><topic>Equatorial Atlantic</topic><topic>Foraminifera</topic><topic>geochemistry</topic><topic>Geology</topic><topic>Gulf of Mexico</topic><topic>Gulf Stream</topic><topic>impact craters</topic><topic>impact features</topic><topic>Invertebrata</topic><topic>isotope ratios</topic><topic>isotopes</topic><topic>K-T boundary</topic><topic>Leg 165</topic><topic>Leg 171B</topic><topic>Leg 207</topic><topic>lower Paleocene</topic><topic>Mass extinctions</topic><topic>Mesozoic</topic><topic>Mexico</topic><topic>microfossils</topic><topic>Nicaragua Rise</topic><topic>North Atlantic</topic><topic>Northwest Atlantic</topic><topic>O-18/O-16</topic><topic>ocean circulation</topic><topic>ocean currents</topic><topic>Ocean Drilling Program</topic><topic>ODP Site 1001</topic><topic>ODP Site 1049</topic><topic>ODP Site 1050</topic><topic>ODP Site 1259</topic><topic>ODP Site 999</topic><topic>Original Articles</topic><topic>oxygen</topic><topic>Paleocene</topic><topic>paleoclimatology</topic><topic>paleoecology</topic><topic>Paleogene</topic><topic>paleontology</topic><topic>Protista</topic><topic>Sea level changes</topic><topic>spherules</topic><topic>Stable isotopes</topic><topic>stratigraphic boundary</topic><topic>Stratigraphy</topic><topic>Tertiary</topic><topic>Texas</topic><topic>Unconformity</topic><topic>United States</topic><topic>Upper Cretaceous</topic><topic>West Atlantic</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>KELLER, GERTA</creatorcontrib><creatorcontrib>KHOZYEM, HASSAN</creatorcontrib><creatorcontrib>ADATTE, THIERRY</creatorcontrib><creatorcontrib>MALARKODI, NALLAMUTHU</creatorcontrib><creatorcontrib>SPANGENBERG, JORGE E.</creatorcontrib><creatorcontrib>STINNESBECK, WOLFGANG</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Research Library</collection><collection>ProQuest Science Journals</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>University of Michigan</collection><jtitle>Geological magazine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>KELLER, GERTA</au><au>KHOZYEM, HASSAN</au><au>ADATTE, THIERRY</au><au>MALARKODI, NALLAMUTHU</au><au>SPANGENBERG, JORGE E.</au><au>STINNESBECK, WOLFGANG</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Chicxulub impact spherules in the North Atlantic and Caribbean: age constraints and Cretaceous–Tertiary boundary hiatus</atitle><jtitle>Geological magazine</jtitle><addtitle>Geol. Mag</addtitle><date>2013-09-01</date><risdate>2013</risdate><volume>150</volume><issue>5</issue><spage>885</spage><epage>907</epage><pages>885-907</pages><issn>0016-7568</issn><eissn>1469-5081</eissn><coden>GEMGA4</coden><abstract>The Chicxulub impact is commonly believed to have caused the Cretaceous–Tertiary boundary mass extinction and a thin impact spherule layer in the North Atlantic and Caribbean is frequently cited as proof. We evaluated this claim in the seven best North Atlantic and Caribbean Cretaceous–Tertiary boundary sequences based on high-resolution biostratigraphy, quantitative faunal analyses and stable isotopes. Results reveal a major Cretaceous–Tertiary boundary unconformity spanning most of Danian subzone P1a(1) and Maastrichtian zones CF1–CF2 (~400 ka) in the NW Atlantic Bass River core, ODP Sites 1049A, 1049C and 1050C. In the Caribbean ODP Sites 999B and 1001B the unconformity spans from the early Danian zone P1a(1) through to zones CF1–CF4 (~3 Ma). Only in the Demerara Rise ODP Site 1259B is erosion relatively minor and restricted to the earliest Danian zone P0 and most of subzone P1a(1) (~150 ka). In all sites examined, Chicxulub impact spherules are reworked into the early Danian subzone P1a(1) about 150–200 ka after the mass extinction. A similar pattern of erosion and redeposition of impact spherules in Danian sediments has previously been documented from Cuba, Haiti, Belize, Guatemala, south and central Mexico. This pattern can be explained by intensified Gulf stream circulation at times of climate cooling and sea level changes. The age of the Chicxulub impact cannot be determined from these reworked impact spherule layers, but can be evaluated based on the stratigraphically oldest spherule layer in NE Mexico and Texas, which indicates that this impact predates the Cretaceous–Tertiary boundary by about 130–150 ka.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/S0016756812001069</doi><tpages>23</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0016-7568 |
ispartof | Geological magazine, 2013-09, Vol.150 (5), p.885-907 |
issn | 0016-7568 1469-5081 |
language | eng |
recordid | cdi_proquest_journals_1418151261 |
source | Cambridge Journals Online |
subjects | assemblages Atlantic Ocean Bass River biostratigraphy Blake Nose Blake Plateau Boundary layer C-13/C-12 carbon Caribbean Sea Cenozoic chemostratigraphy Chicxulub Crater Colombian Basin Cretaceous currents Danian Demerara Rise Equatorial Atlantic Foraminifera geochemistry Geology Gulf of Mexico Gulf Stream impact craters impact features Invertebrata isotope ratios isotopes K-T boundary Leg 165 Leg 171B Leg 207 lower Paleocene Mass extinctions Mesozoic Mexico microfossils Nicaragua Rise North Atlantic Northwest Atlantic O-18/O-16 ocean circulation ocean currents Ocean Drilling Program ODP Site 1001 ODP Site 1049 ODP Site 1050 ODP Site 1259 ODP Site 999 Original Articles oxygen Paleocene paleoclimatology paleoecology Paleogene paleontology Protista Sea level changes spherules Stable isotopes stratigraphic boundary Stratigraphy Tertiary Texas Unconformity United States Upper Cretaceous West Atlantic |
title | Chicxulub impact spherules in the North Atlantic and Caribbean: age constraints and Cretaceous–Tertiary boundary hiatus |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T04%3A54%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Chicxulub%20impact%20spherules%20in%20the%20North%20Atlantic%20and%20Caribbean:%20age%20constraints%20and%20Cretaceous%E2%80%93Tertiary%20boundary%20hiatus&rft.jtitle=Geological%20magazine&rft.au=KELLER,%20GERTA&rft.date=2013-09-01&rft.volume=150&rft.issue=5&rft.spage=885&rft.epage=907&rft.pages=885-907&rft.issn=0016-7568&rft.eissn=1469-5081&rft.coden=GEMGA4&rft_id=info:doi/10.1017/S0016756812001069&rft_dat=%3Cproquest_cross%3E3037969051%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a419t-fd00b92eea916014dfa364beb18b027a0b5a78afb661d0a8326aaedb7c3e4f3c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1418151261&rft_id=info:pmid/&rft_cupid=10_1017_S0016756812001069&rfr_iscdi=true |