Loading…

The WiggleZ Dark Energy Survey: star formation in UV-luminous galaxies from their luminosity functions

We present the ultraviolet (UV) luminosity function of galaxies from the GALEX Medium Imaging Survey with measured spectroscopic redshifts from the first data release of the WiggleZ Dark Energy Survey. Our sample consists of 39 996 NUV < 22.8 emission line galaxies in the redshift range 0.1 <...

Full description

Saved in:
Bibliographic Details
Published in:Monthly notices of the Royal Astronomical Society 2013-09, Vol.434 (1), p.257-281
Main Authors: Jurek, Russell J., Drinkwater, Michael J., Pimbblet, Kevin, Glazebrook, Karl, Blake, Chris, Brough, Sarah, Colless, Matthew, Contreras, Carlos, Couch, Warrick, Croom, Scott, Croton, Darren, M. Davis, Tamara, Forster, Karl, Gilbank, David, Gladders, Mike, Jelliffe, Ben, Li, I-hui, Madore, Barry, Martin, D. Christopher, Poole, Gregory B., Pracy, Michael, Sharp, Rob, Wisnioski, Emily, Woods, David, Wyder, Ted K., Yee, H. K. C.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c267t-7172e51309df7264d4cebfc318085e2268c5a2c1c029a68560381b880d2190613
cites cdi_FETCH-LOGICAL-c267t-7172e51309df7264d4cebfc318085e2268c5a2c1c029a68560381b880d2190613
container_end_page 281
container_issue 1
container_start_page 257
container_title Monthly notices of the Royal Astronomical Society
container_volume 434
creator Jurek, Russell J.
Drinkwater, Michael J.
Pimbblet, Kevin
Glazebrook, Karl
Blake, Chris
Brough, Sarah
Colless, Matthew
Contreras, Carlos
Couch, Warrick
Croom, Scott
Croton, Darren
M. Davis, Tamara
Forster, Karl
Gilbank, David
Gladders, Mike
Jelliffe, Ben
Li, I-hui
Madore, Barry
Martin, D. Christopher
Poole, Gregory B.
Pracy, Michael
Sharp, Rob
Wisnioski, Emily
Woods, David
Wyder, Ted K.
Yee, H. K. C.
description We present the ultraviolet (UV) luminosity function of galaxies from the GALEX Medium Imaging Survey with measured spectroscopic redshifts from the first data release of the WiggleZ Dark Energy Survey. Our sample consists of 39 996 NUV < 22.8 emission line galaxies in the redshift range 0.1 < z < 0.9. This sample selects galaxies with high star formation rates: at 0.6 < z < 0.9 the median star formation rate is at the upper 95th percentile of optically selected (r < 22.5) galaxies and the sample contains about 50 per cent of all NUV < 22.8, 0.6 < z < 0.9 starburst galaxies within the volume sampled. The most luminous galaxies in our sample ( − 21.0 > M NUV > −22.5) evolve very rapidly with a number density declining as (1 + z)5±1 from redshift z = 0.9 to 0.6. These starburst galaxies (M NUV < −21 is approximately a star formation rate of 30 M yr−1) contribute about 1 per cent of cosmic star formation over the redshift range z = 0.6-0.9. The star formation rate density of these very luminous galaxies evolves rapidly, as (1 + z)4±1. Such a rapid evolution implies that the majority of star formation in these large galaxies must have occurred before z = 0.9. We measure the UV luminosity function in Δz = 0.05 redshift intervals spanning 0.1 < z < 0.9, and provide analytic fits to the results. Our measurements of the luminosity function over this redshift range probe further into the bright end (1-2 mag further) than previous measurements, e.g. Arnouts et al., Budavári et al. and Treyer et al., due to our much larger sample size and sampled volume. At all redshifts z > 0.55 we find that the bright end of the luminosity function is not well described by a pure Schechter function due to an excess of very luminous (M NUV < −22) galaxies. These luminosity functions can be used to create a radial selection function for the WiggleZ survey or test models of galaxy formation and evolution. Here we test the AGN feedback model in Scannapieco, Silk & Bouwens, and find that this AGN feedback model requires AGN feedback efficiency to vary with one or more of the following: stellar mass, star formation rate and redshift.
doi_str_mv 10.1093/mnras/stt1015
format article
fullrecord <record><control><sourceid>proquest_TOX</sourceid><recordid>TN_cdi_proquest_journals_1420351718</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/mnras/stt1015</oup_id><sourcerecordid>3044939601</sourcerecordid><originalsourceid>FETCH-LOGICAL-c267t-7172e51309df7264d4cebfc318085e2268c5a2c1c029a68560381b880d2190613</originalsourceid><addsrcrecordid>eNqFkDtPwzAUhS0EEqUwsltiYQn1tRPHYUOlPKRKDLQgsUSua6cueRTbQeTfk5LuTHc43zlX-hC6BHIDJGOTqnbST3wIQCA5QiNgPIloxvkxGhHCkkikAKfozPstISRmlI-QWWw0frdFUeoPfC_dJ57V2hUdfm3dt-5usQ_SYdO4Sgbb1NjWePkWlW1l66b1uJCl_LHaY-OaCoeNtg4Pobehw6at1b7mz9GJkaXXF4c7RsuH2WL6FM1fHp-nd_NIUZ6GKIWU6gQYydYmpTxex0qvjGIgiEg0pVyoRFIFitBMcpFwwgSshCBrChnhwMboatjduear1T7k26Z1df8yh5j2DiAF0VPRQCnXeO-0yXfOVtJ1OZB8rzL_U5kfVPb89cA37e4f9BfrrHaF</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1420351718</pqid></control><display><type>article</type><title>The WiggleZ Dark Energy Survey: star formation in UV-luminous galaxies from their luminosity functions</title><source>Open Access: Oxford University Press Open Journals</source><creator>Jurek, Russell J. ; Drinkwater, Michael J. ; Pimbblet, Kevin ; Glazebrook, Karl ; Blake, Chris ; Brough, Sarah ; Colless, Matthew ; Contreras, Carlos ; Couch, Warrick ; Croom, Scott ; Croton, Darren ; M. Davis, Tamara ; Forster, Karl ; Gilbank, David ; Gladders, Mike ; Jelliffe, Ben ; Li, I-hui ; Madore, Barry ; Martin, D. Christopher ; Poole, Gregory B. ; Pracy, Michael ; Sharp, Rob ; Wisnioski, Emily ; Woods, David ; Wyder, Ted K. ; Yee, H. K. C.</creator><creatorcontrib>Jurek, Russell J. ; Drinkwater, Michael J. ; Pimbblet, Kevin ; Glazebrook, Karl ; Blake, Chris ; Brough, Sarah ; Colless, Matthew ; Contreras, Carlos ; Couch, Warrick ; Croom, Scott ; Croton, Darren ; M. Davis, Tamara ; Forster, Karl ; Gilbank, David ; Gladders, Mike ; Jelliffe, Ben ; Li, I-hui ; Madore, Barry ; Martin, D. Christopher ; Poole, Gregory B. ; Pracy, Michael ; Sharp, Rob ; Wisnioski, Emily ; Woods, David ; Wyder, Ted K. ; Yee, H. K. C.</creatorcontrib><description><![CDATA[We present the ultraviolet (UV) luminosity function of galaxies from the GALEX Medium Imaging Survey with measured spectroscopic redshifts from the first data release of the WiggleZ Dark Energy Survey. Our sample consists of 39 996 NUV < 22.8 emission line galaxies in the redshift range 0.1 < z < 0.9. This sample selects galaxies with high star formation rates: at 0.6 < z < 0.9 the median star formation rate is at the upper 95th percentile of optically selected (r < 22.5) galaxies and the sample contains about 50 per cent of all NUV < 22.8, 0.6 < z < 0.9 starburst galaxies within the volume sampled. The most luminous galaxies in our sample ( − 21.0 > M NUV > −22.5) evolve very rapidly with a number density declining as (1 + z)5±1 from redshift z = 0.9 to 0.6. These starburst galaxies (M NUV < −21 is approximately a star formation rate of 30 M yr−1) contribute about 1 per cent of cosmic star formation over the redshift range z = 0.6-0.9. The star formation rate density of these very luminous galaxies evolves rapidly, as (1 + z)4±1. Such a rapid evolution implies that the majority of star formation in these large galaxies must have occurred before z = 0.9. We measure the UV luminosity function in Δz = 0.05 redshift intervals spanning 0.1 < z < 0.9, and provide analytic fits to the results. Our measurements of the luminosity function over this redshift range probe further into the bright end (1-2 mag further) than previous measurements, e.g. Arnouts et al., Budavári et al. and Treyer et al., due to our much larger sample size and sampled volume. At all redshifts z > 0.55 we find that the bright end of the luminosity function is not well described by a pure Schechter function due to an excess of very luminous (M NUV < −22) galaxies. These luminosity functions can be used to create a radial selection function for the WiggleZ survey or test models of galaxy formation and evolution. Here we test the AGN feedback model in Scannapieco, Silk & Bouwens, and find that this AGN feedback model requires AGN feedback efficiency to vary with one or more of the following: stellar mass, star formation rate and redshift.]]></description><identifier>ISSN: 0035-8711</identifier><identifier>EISSN: 1365-2966</identifier><identifier>DOI: 10.1093/mnras/stt1015</identifier><language>eng</language><publisher>London: Oxford University Press</publisher><subject>Dark energy ; Luminosity ; Red shift ; Spectrum analysis ; Star &amp; galaxy formation ; Ultraviolet astronomy</subject><ispartof>Monthly notices of the Royal Astronomical Society, 2013-09, Vol.434 (1), p.257-281</ispartof><rights>2013 The Authors Published by Oxford University Press on behalf of the Royal Astronomical Society 2013</rights><rights>Copyright Oxford University Press, UK Sep 1, 2013</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c267t-7172e51309df7264d4cebfc318085e2268c5a2c1c029a68560381b880d2190613</citedby><cites>FETCH-LOGICAL-c267t-7172e51309df7264d4cebfc318085e2268c5a2c1c029a68560381b880d2190613</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,1604,27924,27925</link.rule.ids><linktorsrc>$$Uhttps://dx.doi.org/10.1093/mnras/stt1015$$EView_record_in_Oxford_University_Press$$FView_record_in_$$GOxford_University_Press</linktorsrc></links><search><creatorcontrib>Jurek, Russell J.</creatorcontrib><creatorcontrib>Drinkwater, Michael J.</creatorcontrib><creatorcontrib>Pimbblet, Kevin</creatorcontrib><creatorcontrib>Glazebrook, Karl</creatorcontrib><creatorcontrib>Blake, Chris</creatorcontrib><creatorcontrib>Brough, Sarah</creatorcontrib><creatorcontrib>Colless, Matthew</creatorcontrib><creatorcontrib>Contreras, Carlos</creatorcontrib><creatorcontrib>Couch, Warrick</creatorcontrib><creatorcontrib>Croom, Scott</creatorcontrib><creatorcontrib>Croton, Darren</creatorcontrib><creatorcontrib>M. Davis, Tamara</creatorcontrib><creatorcontrib>Forster, Karl</creatorcontrib><creatorcontrib>Gilbank, David</creatorcontrib><creatorcontrib>Gladders, Mike</creatorcontrib><creatorcontrib>Jelliffe, Ben</creatorcontrib><creatorcontrib>Li, I-hui</creatorcontrib><creatorcontrib>Madore, Barry</creatorcontrib><creatorcontrib>Martin, D. Christopher</creatorcontrib><creatorcontrib>Poole, Gregory B.</creatorcontrib><creatorcontrib>Pracy, Michael</creatorcontrib><creatorcontrib>Sharp, Rob</creatorcontrib><creatorcontrib>Wisnioski, Emily</creatorcontrib><creatorcontrib>Woods, David</creatorcontrib><creatorcontrib>Wyder, Ted K.</creatorcontrib><creatorcontrib>Yee, H. K. C.</creatorcontrib><title>The WiggleZ Dark Energy Survey: star formation in UV-luminous galaxies from their luminosity functions</title><title>Monthly notices of the Royal Astronomical Society</title><addtitle>Mon. Not. R. Astron. Soc</addtitle><description><![CDATA[We present the ultraviolet (UV) luminosity function of galaxies from the GALEX Medium Imaging Survey with measured spectroscopic redshifts from the first data release of the WiggleZ Dark Energy Survey. Our sample consists of 39 996 NUV < 22.8 emission line galaxies in the redshift range 0.1 < z < 0.9. This sample selects galaxies with high star formation rates: at 0.6 < z < 0.9 the median star formation rate is at the upper 95th percentile of optically selected (r < 22.5) galaxies and the sample contains about 50 per cent of all NUV < 22.8, 0.6 < z < 0.9 starburst galaxies within the volume sampled. The most luminous galaxies in our sample ( − 21.0 > M NUV > −22.5) evolve very rapidly with a number density declining as (1 + z)5±1 from redshift z = 0.9 to 0.6. These starburst galaxies (M NUV < −21 is approximately a star formation rate of 30 M yr−1) contribute about 1 per cent of cosmic star formation over the redshift range z = 0.6-0.9. The star formation rate density of these very luminous galaxies evolves rapidly, as (1 + z)4±1. Such a rapid evolution implies that the majority of star formation in these large galaxies must have occurred before z = 0.9. We measure the UV luminosity function in Δz = 0.05 redshift intervals spanning 0.1 < z < 0.9, and provide analytic fits to the results. Our measurements of the luminosity function over this redshift range probe further into the bright end (1-2 mag further) than previous measurements, e.g. Arnouts et al., Budavári et al. and Treyer et al., due to our much larger sample size and sampled volume. At all redshifts z > 0.55 we find that the bright end of the luminosity function is not well described by a pure Schechter function due to an excess of very luminous (M NUV < −22) galaxies. These luminosity functions can be used to create a radial selection function for the WiggleZ survey or test models of galaxy formation and evolution. Here we test the AGN feedback model in Scannapieco, Silk & Bouwens, and find that this AGN feedback model requires AGN feedback efficiency to vary with one or more of the following: stellar mass, star formation rate and redshift.]]></description><subject>Dark energy</subject><subject>Luminosity</subject><subject>Red shift</subject><subject>Spectrum analysis</subject><subject>Star &amp; galaxy formation</subject><subject>Ultraviolet astronomy</subject><issn>0035-8711</issn><issn>1365-2966</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqFkDtPwzAUhS0EEqUwsltiYQn1tRPHYUOlPKRKDLQgsUSua6cueRTbQeTfk5LuTHc43zlX-hC6BHIDJGOTqnbST3wIQCA5QiNgPIloxvkxGhHCkkikAKfozPstISRmlI-QWWw0frdFUeoPfC_dJ57V2hUdfm3dt-5usQ_SYdO4Sgbb1NjWePkWlW1l66b1uJCl_LHaY-OaCoeNtg4Pobehw6at1b7mz9GJkaXXF4c7RsuH2WL6FM1fHp-nd_NIUZ6GKIWU6gQYydYmpTxex0qvjGIgiEg0pVyoRFIFitBMcpFwwgSshCBrChnhwMboatjduear1T7k26Z1df8yh5j2DiAF0VPRQCnXeO-0yXfOVtJ1OZB8rzL_U5kfVPb89cA37e4f9BfrrHaF</recordid><startdate>20130901</startdate><enddate>20130901</enddate><creator>Jurek, Russell J.</creator><creator>Drinkwater, Michael J.</creator><creator>Pimbblet, Kevin</creator><creator>Glazebrook, Karl</creator><creator>Blake, Chris</creator><creator>Brough, Sarah</creator><creator>Colless, Matthew</creator><creator>Contreras, Carlos</creator><creator>Couch, Warrick</creator><creator>Croom, Scott</creator><creator>Croton, Darren</creator><creator>M. Davis, Tamara</creator><creator>Forster, Karl</creator><creator>Gilbank, David</creator><creator>Gladders, Mike</creator><creator>Jelliffe, Ben</creator><creator>Li, I-hui</creator><creator>Madore, Barry</creator><creator>Martin, D. Christopher</creator><creator>Poole, Gregory B.</creator><creator>Pracy, Michael</creator><creator>Sharp, Rob</creator><creator>Wisnioski, Emily</creator><creator>Woods, David</creator><creator>Wyder, Ted K.</creator><creator>Yee, H. K. C.</creator><general>Oxford University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20130901</creationdate><title>The WiggleZ Dark Energy Survey: star formation in UV-luminous galaxies from their luminosity functions</title><author>Jurek, Russell J. ; Drinkwater, Michael J. ; Pimbblet, Kevin ; Glazebrook, Karl ; Blake, Chris ; Brough, Sarah ; Colless, Matthew ; Contreras, Carlos ; Couch, Warrick ; Croom, Scott ; Croton, Darren ; M. Davis, Tamara ; Forster, Karl ; Gilbank, David ; Gladders, Mike ; Jelliffe, Ben ; Li, I-hui ; Madore, Barry ; Martin, D. Christopher ; Poole, Gregory B. ; Pracy, Michael ; Sharp, Rob ; Wisnioski, Emily ; Woods, David ; Wyder, Ted K. ; Yee, H. K. C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c267t-7172e51309df7264d4cebfc318085e2268c5a2c1c029a68560381b880d2190613</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Dark energy</topic><topic>Luminosity</topic><topic>Red shift</topic><topic>Spectrum analysis</topic><topic>Star &amp; galaxy formation</topic><topic>Ultraviolet astronomy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jurek, Russell J.</creatorcontrib><creatorcontrib>Drinkwater, Michael J.</creatorcontrib><creatorcontrib>Pimbblet, Kevin</creatorcontrib><creatorcontrib>Glazebrook, Karl</creatorcontrib><creatorcontrib>Blake, Chris</creatorcontrib><creatorcontrib>Brough, Sarah</creatorcontrib><creatorcontrib>Colless, Matthew</creatorcontrib><creatorcontrib>Contreras, Carlos</creatorcontrib><creatorcontrib>Couch, Warrick</creatorcontrib><creatorcontrib>Croom, Scott</creatorcontrib><creatorcontrib>Croton, Darren</creatorcontrib><creatorcontrib>M. Davis, Tamara</creatorcontrib><creatorcontrib>Forster, Karl</creatorcontrib><creatorcontrib>Gilbank, David</creatorcontrib><creatorcontrib>Gladders, Mike</creatorcontrib><creatorcontrib>Jelliffe, Ben</creatorcontrib><creatorcontrib>Li, I-hui</creatorcontrib><creatorcontrib>Madore, Barry</creatorcontrib><creatorcontrib>Martin, D. Christopher</creatorcontrib><creatorcontrib>Poole, Gregory B.</creatorcontrib><creatorcontrib>Pracy, Michael</creatorcontrib><creatorcontrib>Sharp, Rob</creatorcontrib><creatorcontrib>Wisnioski, Emily</creatorcontrib><creatorcontrib>Woods, David</creatorcontrib><creatorcontrib>Wyder, Ted K.</creatorcontrib><creatorcontrib>Yee, H. K. C.</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Monthly notices of the Royal Astronomical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Jurek, Russell J.</au><au>Drinkwater, Michael J.</au><au>Pimbblet, Kevin</au><au>Glazebrook, Karl</au><au>Blake, Chris</au><au>Brough, Sarah</au><au>Colless, Matthew</au><au>Contreras, Carlos</au><au>Couch, Warrick</au><au>Croom, Scott</au><au>Croton, Darren</au><au>M. Davis, Tamara</au><au>Forster, Karl</au><au>Gilbank, David</au><au>Gladders, Mike</au><au>Jelliffe, Ben</au><au>Li, I-hui</au><au>Madore, Barry</au><au>Martin, D. Christopher</au><au>Poole, Gregory B.</au><au>Pracy, Michael</au><au>Sharp, Rob</au><au>Wisnioski, Emily</au><au>Woods, David</au><au>Wyder, Ted K.</au><au>Yee, H. K. C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The WiggleZ Dark Energy Survey: star formation in UV-luminous galaxies from their luminosity functions</atitle><jtitle>Monthly notices of the Royal Astronomical Society</jtitle><stitle>Mon. Not. R. Astron. Soc</stitle><date>2013-09-01</date><risdate>2013</risdate><volume>434</volume><issue>1</issue><spage>257</spage><epage>281</epage><pages>257-281</pages><issn>0035-8711</issn><eissn>1365-2966</eissn><abstract><![CDATA[We present the ultraviolet (UV) luminosity function of galaxies from the GALEX Medium Imaging Survey with measured spectroscopic redshifts from the first data release of the WiggleZ Dark Energy Survey. Our sample consists of 39 996 NUV < 22.8 emission line galaxies in the redshift range 0.1 < z < 0.9. This sample selects galaxies with high star formation rates: at 0.6 < z < 0.9 the median star formation rate is at the upper 95th percentile of optically selected (r < 22.5) galaxies and the sample contains about 50 per cent of all NUV < 22.8, 0.6 < z < 0.9 starburst galaxies within the volume sampled. The most luminous galaxies in our sample ( − 21.0 > M NUV > −22.5) evolve very rapidly with a number density declining as (1 + z)5±1 from redshift z = 0.9 to 0.6. These starburst galaxies (M NUV < −21 is approximately a star formation rate of 30 M yr−1) contribute about 1 per cent of cosmic star formation over the redshift range z = 0.6-0.9. The star formation rate density of these very luminous galaxies evolves rapidly, as (1 + z)4±1. Such a rapid evolution implies that the majority of star formation in these large galaxies must have occurred before z = 0.9. We measure the UV luminosity function in Δz = 0.05 redshift intervals spanning 0.1 < z < 0.9, and provide analytic fits to the results. Our measurements of the luminosity function over this redshift range probe further into the bright end (1-2 mag further) than previous measurements, e.g. Arnouts et al., Budavári et al. and Treyer et al., due to our much larger sample size and sampled volume. At all redshifts z > 0.55 we find that the bright end of the luminosity function is not well described by a pure Schechter function due to an excess of very luminous (M NUV < −22) galaxies. These luminosity functions can be used to create a radial selection function for the WiggleZ survey or test models of galaxy formation and evolution. Here we test the AGN feedback model in Scannapieco, Silk & Bouwens, and find that this AGN feedback model requires AGN feedback efficiency to vary with one or more of the following: stellar mass, star formation rate and redshift.]]></abstract><cop>London</cop><pub>Oxford University Press</pub><doi>10.1093/mnras/stt1015</doi><tpages>25</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0035-8711
ispartof Monthly notices of the Royal Astronomical Society, 2013-09, Vol.434 (1), p.257-281
issn 0035-8711
1365-2966
language eng
recordid cdi_proquest_journals_1420351718
source Open Access: Oxford University Press Open Journals
subjects Dark energy
Luminosity
Red shift
Spectrum analysis
Star & galaxy formation
Ultraviolet astronomy
title The WiggleZ Dark Energy Survey: star formation in UV-luminous galaxies from their luminosity functions
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T02%3A43%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_TOX&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20WiggleZ%20Dark%20Energy%20Survey:%20star%20formation%20in%20UV-luminous%20galaxies%20from%20their%20luminosity%20functions&rft.jtitle=Monthly%20notices%20of%20the%20Royal%20Astronomical%20Society&rft.au=Jurek,%20Russell%20J.&rft.date=2013-09-01&rft.volume=434&rft.issue=1&rft.spage=257&rft.epage=281&rft.pages=257-281&rft.issn=0035-8711&rft.eissn=1365-2966&rft_id=info:doi/10.1093/mnras/stt1015&rft_dat=%3Cproquest_TOX%3E3044939601%3C/proquest_TOX%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c267t-7172e51309df7264d4cebfc318085e2268c5a2c1c029a68560381b880d2190613%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1420351718&rft_id=info:pmid/&rft_oup_id=10.1093/mnras/stt1015&rfr_iscdi=true