Loading…
A Model-Based Analysis of Semiautomated Data Discovery and Entry Using Automated Content-Extraction
Content extraction systems can automatically extract entities and relations from raw text and use the information to populate knowledge bases, potentially eliminating the need for manual data discovery and entry. Unfortunately, content extraction is not sufficiently accurate for end users who requir...
Saved in:
Published in: | International journal of human-computer interaction 2013-10, Vol.29 (10), p.629-646 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c401t-994d0eec2a62005cdf899619ca341ba4d69b043085e70e297341260e73954cb63 |
---|---|
cites | cdi_FETCH-LOGICAL-c401t-994d0eec2a62005cdf899619ca341ba4d69b043085e70e297341260e73954cb63 |
container_end_page | 646 |
container_issue | 10 |
container_start_page | 629 |
container_title | International journal of human-computer interaction |
container_volume | 29 |
creator | Winder, Ransom Haimson, Craig Goldstein-Stewart, Jade Grossman, Justin |
description | Content extraction systems can automatically extract entities and relations from raw text and use the information to populate knowledge bases, potentially eliminating the need for manual data discovery and entry. Unfortunately, content extraction is not sufficiently accurate for end users who require high trust in the information uploaded to their databases, creating a need for human validation and correction of extracted content. In this article the potential influence of content extraction errors on a prototype semiautomated system that will allow a human reviewer to correct and validate extracted information before uploading it was examined, focusing on the identification and correction of precision errors. Content extraction was applied to 6 different corpora, and a Goals, Operators, Methods, and Selection rules Language (GOMSL) model was used to simulate the activities of a human using the prototype system to review extraction results, correct precision errors, ignore spurious instances, and validate information. The simulated task completion rate of the semiautomated system model was compared with that of a second GOMSL model that simulates the steps required for finding and entering information manually. Results quantify the efficiency advantage of the semiautomated workflow-estimated to be roughly 1.5 to 2 times more efficient than a manual workflow-and illustrate the value of employing multidisciplinary quantitative methods to calculate system-level measures of technology utility. |
doi_str_mv | 10.1080/10447318.2012.758528 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1421972700</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1520332120</sourcerecordid><originalsourceid>FETCH-LOGICAL-c401t-994d0eec2a62005cdf899619ca341ba4d69b043085e70e297341260e73954cb63</originalsourceid><addsrcrecordid>eNqFkU1v2zAMho2hBZZ-_IMeDOyyi1Pqy7JORZZmbYEOO2w5C4wsFw5sKZOUdvn3k5Guhx62C0mQD18QfIviisCcQAPXBDiXjDRzCoTOpWgEbT4UMyIYraRQcJLrjFQT87E4i3ELABQEmxVmUX7zrR2qLxhtWy4cDofYx9J35Q879rhPfsSUJ7eYsLzto_HPNhxKdG25cilX69i7p3LxBi69S9alavU7BTSp9-6iOO1wiPbyNZ8X66-rn8v76vH73cNy8VgZDiRVSvEWrDUUawogTNs1StVEGWScbJC3tdoAZ9AIK8FSJXOb1mAlU4KbTc3Oi89H3V3wv_Y2Jj3me-0woLN-HzURFBijJMf_opw3Mv9PyIx-eodu_T7kP00UJUpSCZMgP1Im-BiD7fQu9COGgyagJ5P0X5P0ZJI-mpTXbo5rvet8GPHFh6HVCQ-DD11AZ_qo2T8V_gDNopX2</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1421972700</pqid></control><display><type>article</type><title>A Model-Based Analysis of Semiautomated Data Discovery and Entry Using Automated Content-Extraction</title><source>Library & Information Science Abstracts (LISA)</source><source>Taylor and Francis Science and Technology Collection</source><source>BSC - Ebsco (Business Source Ultimate)</source><creator>Winder, Ransom ; Haimson, Craig ; Goldstein-Stewart, Jade ; Grossman, Justin</creator><creatorcontrib>Winder, Ransom ; Haimson, Craig ; Goldstein-Stewart, Jade ; Grossman, Justin</creatorcontrib><description>Content extraction systems can automatically extract entities and relations from raw text and use the information to populate knowledge bases, potentially eliminating the need for manual data discovery and entry. Unfortunately, content extraction is not sufficiently accurate for end users who require high trust in the information uploaded to their databases, creating a need for human validation and correction of extracted content. In this article the potential influence of content extraction errors on a prototype semiautomated system that will allow a human reviewer to correct and validate extracted information before uploading it was examined, focusing on the identification and correction of precision errors. Content extraction was applied to 6 different corpora, and a Goals, Operators, Methods, and Selection rules Language (GOMSL) model was used to simulate the activities of a human using the prototype system to review extraction results, correct precision errors, ignore spurious instances, and validate information. The simulated task completion rate of the semiautomated system model was compared with that of a second GOMSL model that simulates the steps required for finding and entering information manually. Results quantify the efficiency advantage of the semiautomated workflow-estimated to be roughly 1.5 to 2 times more efficient than a manual workflow-and illustrate the value of employing multidisciplinary quantitative methods to calculate system-level measures of technology utility.</description><identifier>ISSN: 1044-7318</identifier><identifier>EISSN: 1532-7590</identifier><identifier>EISSN: 1044-7318</identifier><identifier>DOI: 10.1080/10447318.2012.758528</identifier><identifier>CODEN: IJHIEC</identifier><language>eng</language><publisher>Norwood: Taylor & Francis</publisher><subject>Automation ; Computer simulation ; Computing time ; Data analysis ; Data entry ; Data mining ; Error correction ; Extraction ; Focusing ; Human ; Information content ; Information systems ; Mathematical models ; Permissible error ; Prototypes ; Simulation</subject><ispartof>International journal of human-computer interaction, 2013-10, Vol.29 (10), p.629-646</ispartof><rights>The MITRE Corporation 2013</rights><rights>Copyright Lawrence Erlbaum Associates, Inc. 2013</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c401t-994d0eec2a62005cdf899619ca341ba4d69b043085e70e297341260e73954cb63</citedby><cites>FETCH-LOGICAL-c401t-994d0eec2a62005cdf899619ca341ba4d69b043085e70e297341260e73954cb63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902,34112,34113</link.rule.ids></links><search><creatorcontrib>Winder, Ransom</creatorcontrib><creatorcontrib>Haimson, Craig</creatorcontrib><creatorcontrib>Goldstein-Stewart, Jade</creatorcontrib><creatorcontrib>Grossman, Justin</creatorcontrib><title>A Model-Based Analysis of Semiautomated Data Discovery and Entry Using Automated Content-Extraction</title><title>International journal of human-computer interaction</title><description>Content extraction systems can automatically extract entities and relations from raw text and use the information to populate knowledge bases, potentially eliminating the need for manual data discovery and entry. Unfortunately, content extraction is not sufficiently accurate for end users who require high trust in the information uploaded to their databases, creating a need for human validation and correction of extracted content. In this article the potential influence of content extraction errors on a prototype semiautomated system that will allow a human reviewer to correct and validate extracted information before uploading it was examined, focusing on the identification and correction of precision errors. Content extraction was applied to 6 different corpora, and a Goals, Operators, Methods, and Selection rules Language (GOMSL) model was used to simulate the activities of a human using the prototype system to review extraction results, correct precision errors, ignore spurious instances, and validate information. The simulated task completion rate of the semiautomated system model was compared with that of a second GOMSL model that simulates the steps required for finding and entering information manually. Results quantify the efficiency advantage of the semiautomated workflow-estimated to be roughly 1.5 to 2 times more efficient than a manual workflow-and illustrate the value of employing multidisciplinary quantitative methods to calculate system-level measures of technology utility.</description><subject>Automation</subject><subject>Computer simulation</subject><subject>Computing time</subject><subject>Data analysis</subject><subject>Data entry</subject><subject>Data mining</subject><subject>Error correction</subject><subject>Extraction</subject><subject>Focusing</subject><subject>Human</subject><subject>Information content</subject><subject>Information systems</subject><subject>Mathematical models</subject><subject>Permissible error</subject><subject>Prototypes</subject><subject>Simulation</subject><issn>1044-7318</issn><issn>1532-7590</issn><issn>1044-7318</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>F2A</sourceid><recordid>eNqFkU1v2zAMho2hBZZ-_IMeDOyyi1Pqy7JORZZmbYEOO2w5C4wsFw5sKZOUdvn3k5Guhx62C0mQD18QfIviisCcQAPXBDiXjDRzCoTOpWgEbT4UMyIYraRQcJLrjFQT87E4i3ELABQEmxVmUX7zrR2qLxhtWy4cDofYx9J35Q879rhPfsSUJ7eYsLzto_HPNhxKdG25cilX69i7p3LxBi69S9alavU7BTSp9-6iOO1wiPbyNZ8X66-rn8v76vH73cNy8VgZDiRVSvEWrDUUawogTNs1StVEGWScbJC3tdoAZ9AIK8FSJXOb1mAlU4KbTc3Oi89H3V3wv_Y2Jj3me-0woLN-HzURFBijJMf_opw3Mv9PyIx-eodu_T7kP00UJUpSCZMgP1Im-BiD7fQu9COGgyagJ5P0X5P0ZJI-mpTXbo5rvet8GPHFh6HVCQ-DD11AZ_qo2T8V_gDNopX2</recordid><startdate>20131003</startdate><enddate>20131003</enddate><creator>Winder, Ransom</creator><creator>Haimson, Craig</creator><creator>Goldstein-Stewart, Jade</creator><creator>Grossman, Justin</creator><general>Taylor & Francis</general><general>Lawrence Erlbaum Associates, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>E3H</scope><scope>F2A</scope><scope>JQ2</scope><scope>7SC</scope><scope>8FD</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>8BP</scope></search><sort><creationdate>20131003</creationdate><title>A Model-Based Analysis of Semiautomated Data Discovery and Entry Using Automated Content-Extraction</title><author>Winder, Ransom ; Haimson, Craig ; Goldstein-Stewart, Jade ; Grossman, Justin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c401t-994d0eec2a62005cdf899619ca341ba4d69b043085e70e297341260e73954cb63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Automation</topic><topic>Computer simulation</topic><topic>Computing time</topic><topic>Data analysis</topic><topic>Data entry</topic><topic>Data mining</topic><topic>Error correction</topic><topic>Extraction</topic><topic>Focusing</topic><topic>Human</topic><topic>Information content</topic><topic>Information systems</topic><topic>Mathematical models</topic><topic>Permissible error</topic><topic>Prototypes</topic><topic>Simulation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Winder, Ransom</creatorcontrib><creatorcontrib>Haimson, Craig</creatorcontrib><creatorcontrib>Goldstein-Stewart, Jade</creatorcontrib><creatorcontrib>Grossman, Justin</creatorcontrib><collection>CrossRef</collection><collection>Library & Information Sciences Abstracts (LISA)</collection><collection>Library & Information Science Abstracts (LISA)</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Library & Information Sciences Abstracts (LISA) - CILIP Edition</collection><jtitle>International journal of human-computer interaction</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Winder, Ransom</au><au>Haimson, Craig</au><au>Goldstein-Stewart, Jade</au><au>Grossman, Justin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Model-Based Analysis of Semiautomated Data Discovery and Entry Using Automated Content-Extraction</atitle><jtitle>International journal of human-computer interaction</jtitle><date>2013-10-03</date><risdate>2013</risdate><volume>29</volume><issue>10</issue><spage>629</spage><epage>646</epage><pages>629-646</pages><issn>1044-7318</issn><eissn>1532-7590</eissn><eissn>1044-7318</eissn><coden>IJHIEC</coden><abstract>Content extraction systems can automatically extract entities and relations from raw text and use the information to populate knowledge bases, potentially eliminating the need for manual data discovery and entry. Unfortunately, content extraction is not sufficiently accurate for end users who require high trust in the information uploaded to their databases, creating a need for human validation and correction of extracted content. In this article the potential influence of content extraction errors on a prototype semiautomated system that will allow a human reviewer to correct and validate extracted information before uploading it was examined, focusing on the identification and correction of precision errors. Content extraction was applied to 6 different corpora, and a Goals, Operators, Methods, and Selection rules Language (GOMSL) model was used to simulate the activities of a human using the prototype system to review extraction results, correct precision errors, ignore spurious instances, and validate information. The simulated task completion rate of the semiautomated system model was compared with that of a second GOMSL model that simulates the steps required for finding and entering information manually. Results quantify the efficiency advantage of the semiautomated workflow-estimated to be roughly 1.5 to 2 times more efficient than a manual workflow-and illustrate the value of employing multidisciplinary quantitative methods to calculate system-level measures of technology utility.</abstract><cop>Norwood</cop><pub>Taylor & Francis</pub><doi>10.1080/10447318.2012.758528</doi><tpages>18</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1044-7318 |
ispartof | International journal of human-computer interaction, 2013-10, Vol.29 (10), p.629-646 |
issn | 1044-7318 1532-7590 1044-7318 |
language | eng |
recordid | cdi_proquest_journals_1421972700 |
source | Library & Information Science Abstracts (LISA); Taylor and Francis Science and Technology Collection; BSC - Ebsco (Business Source Ultimate) |
subjects | Automation Computer simulation Computing time Data analysis Data entry Data mining Error correction Extraction Focusing Human Information content Information systems Mathematical models Permissible error Prototypes Simulation |
title | A Model-Based Analysis of Semiautomated Data Discovery and Entry Using Automated Content-Extraction |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T15%3A50%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Model-Based%20Analysis%20of%20Semiautomated%20Data%20Discovery%20and%20Entry%20Using%20Automated%20Content-Extraction&rft.jtitle=International%20journal%20of%20human-computer%20interaction&rft.au=Winder,%20Ransom&rft.date=2013-10-03&rft.volume=29&rft.issue=10&rft.spage=629&rft.epage=646&rft.pages=629-646&rft.issn=1044-7318&rft.eissn=1532-7590&rft.coden=IJHIEC&rft_id=info:doi/10.1080/10447318.2012.758528&rft_dat=%3Cproquest_cross%3E1520332120%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c401t-994d0eec2a62005cdf899619ca341ba4d69b043085e70e297341260e73954cb63%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1421972700&rft_id=info:pmid/&rfr_iscdi=true |