Loading…

A Model-Based Analysis of Semiautomated Data Discovery and Entry Using Automated Content-Extraction

Content extraction systems can automatically extract entities and relations from raw text and use the information to populate knowledge bases, potentially eliminating the need for manual data discovery and entry. Unfortunately, content extraction is not sufficiently accurate for end users who requir...

Full description

Saved in:
Bibliographic Details
Published in:International journal of human-computer interaction 2013-10, Vol.29 (10), p.629-646
Main Authors: Winder, Ransom, Haimson, Craig, Goldstein-Stewart, Jade, Grossman, Justin
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c401t-994d0eec2a62005cdf899619ca341ba4d69b043085e70e297341260e73954cb63
cites cdi_FETCH-LOGICAL-c401t-994d0eec2a62005cdf899619ca341ba4d69b043085e70e297341260e73954cb63
container_end_page 646
container_issue 10
container_start_page 629
container_title International journal of human-computer interaction
container_volume 29
creator Winder, Ransom
Haimson, Craig
Goldstein-Stewart, Jade
Grossman, Justin
description Content extraction systems can automatically extract entities and relations from raw text and use the information to populate knowledge bases, potentially eliminating the need for manual data discovery and entry. Unfortunately, content extraction is not sufficiently accurate for end users who require high trust in the information uploaded to their databases, creating a need for human validation and correction of extracted content. In this article the potential influence of content extraction errors on a prototype semiautomated system that will allow a human reviewer to correct and validate extracted information before uploading it was examined, focusing on the identification and correction of precision errors. Content extraction was applied to 6 different corpora, and a Goals, Operators, Methods, and Selection rules Language (GOMSL) model was used to simulate the activities of a human using the prototype system to review extraction results, correct precision errors, ignore spurious instances, and validate information. The simulated task completion rate of the semiautomated system model was compared with that of a second GOMSL model that simulates the steps required for finding and entering information manually. Results quantify the efficiency advantage of the semiautomated workflow-estimated to be roughly 1.5 to 2 times more efficient than a manual workflow-and illustrate the value of employing multidisciplinary quantitative methods to calculate system-level measures of technology utility.
doi_str_mv 10.1080/10447318.2012.758528
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1421972700</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1520332120</sourcerecordid><originalsourceid>FETCH-LOGICAL-c401t-994d0eec2a62005cdf899619ca341ba4d69b043085e70e297341260e73954cb63</originalsourceid><addsrcrecordid>eNqFkU1v2zAMho2hBZZ-_IMeDOyyi1Pqy7JORZZmbYEOO2w5C4wsFw5sKZOUdvn3k5Guhx62C0mQD18QfIviisCcQAPXBDiXjDRzCoTOpWgEbT4UMyIYraRQcJLrjFQT87E4i3ELABQEmxVmUX7zrR2qLxhtWy4cDofYx9J35Q879rhPfsSUJ7eYsLzto_HPNhxKdG25cilX69i7p3LxBi69S9alavU7BTSp9-6iOO1wiPbyNZ8X66-rn8v76vH73cNy8VgZDiRVSvEWrDUUawogTNs1StVEGWScbJC3tdoAZ9AIK8FSJXOb1mAlU4KbTc3Oi89H3V3wv_Y2Jj3me-0woLN-HzURFBijJMf_opw3Mv9PyIx-eodu_T7kP00UJUpSCZMgP1Im-BiD7fQu9COGgyagJ5P0X5P0ZJI-mpTXbo5rvet8GPHFh6HVCQ-DD11AZ_qo2T8V_gDNopX2</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1421972700</pqid></control><display><type>article</type><title>A Model-Based Analysis of Semiautomated Data Discovery and Entry Using Automated Content-Extraction</title><source>Library &amp; Information Science Abstracts (LISA)</source><source>Taylor and Francis Science and Technology Collection</source><source>BSC - Ebsco (Business Source Ultimate)</source><creator>Winder, Ransom ; Haimson, Craig ; Goldstein-Stewart, Jade ; Grossman, Justin</creator><creatorcontrib>Winder, Ransom ; Haimson, Craig ; Goldstein-Stewart, Jade ; Grossman, Justin</creatorcontrib><description>Content extraction systems can automatically extract entities and relations from raw text and use the information to populate knowledge bases, potentially eliminating the need for manual data discovery and entry. Unfortunately, content extraction is not sufficiently accurate for end users who require high trust in the information uploaded to their databases, creating a need for human validation and correction of extracted content. In this article the potential influence of content extraction errors on a prototype semiautomated system that will allow a human reviewer to correct and validate extracted information before uploading it was examined, focusing on the identification and correction of precision errors. Content extraction was applied to 6 different corpora, and a Goals, Operators, Methods, and Selection rules Language (GOMSL) model was used to simulate the activities of a human using the prototype system to review extraction results, correct precision errors, ignore spurious instances, and validate information. The simulated task completion rate of the semiautomated system model was compared with that of a second GOMSL model that simulates the steps required for finding and entering information manually. Results quantify the efficiency advantage of the semiautomated workflow-estimated to be roughly 1.5 to 2 times more efficient than a manual workflow-and illustrate the value of employing multidisciplinary quantitative methods to calculate system-level measures of technology utility.</description><identifier>ISSN: 1044-7318</identifier><identifier>EISSN: 1532-7590</identifier><identifier>EISSN: 1044-7318</identifier><identifier>DOI: 10.1080/10447318.2012.758528</identifier><identifier>CODEN: IJHIEC</identifier><language>eng</language><publisher>Norwood: Taylor &amp; Francis</publisher><subject>Automation ; Computer simulation ; Computing time ; Data analysis ; Data entry ; Data mining ; Error correction ; Extraction ; Focusing ; Human ; Information content ; Information systems ; Mathematical models ; Permissible error ; Prototypes ; Simulation</subject><ispartof>International journal of human-computer interaction, 2013-10, Vol.29 (10), p.629-646</ispartof><rights>The MITRE Corporation 2013</rights><rights>Copyright Lawrence Erlbaum Associates, Inc. 2013</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c401t-994d0eec2a62005cdf899619ca341ba4d69b043085e70e297341260e73954cb63</citedby><cites>FETCH-LOGICAL-c401t-994d0eec2a62005cdf899619ca341ba4d69b043085e70e297341260e73954cb63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902,34112,34113</link.rule.ids></links><search><creatorcontrib>Winder, Ransom</creatorcontrib><creatorcontrib>Haimson, Craig</creatorcontrib><creatorcontrib>Goldstein-Stewart, Jade</creatorcontrib><creatorcontrib>Grossman, Justin</creatorcontrib><title>A Model-Based Analysis of Semiautomated Data Discovery and Entry Using Automated Content-Extraction</title><title>International journal of human-computer interaction</title><description>Content extraction systems can automatically extract entities and relations from raw text and use the information to populate knowledge bases, potentially eliminating the need for manual data discovery and entry. Unfortunately, content extraction is not sufficiently accurate for end users who require high trust in the information uploaded to their databases, creating a need for human validation and correction of extracted content. In this article the potential influence of content extraction errors on a prototype semiautomated system that will allow a human reviewer to correct and validate extracted information before uploading it was examined, focusing on the identification and correction of precision errors. Content extraction was applied to 6 different corpora, and a Goals, Operators, Methods, and Selection rules Language (GOMSL) model was used to simulate the activities of a human using the prototype system to review extraction results, correct precision errors, ignore spurious instances, and validate information. The simulated task completion rate of the semiautomated system model was compared with that of a second GOMSL model that simulates the steps required for finding and entering information manually. Results quantify the efficiency advantage of the semiautomated workflow-estimated to be roughly 1.5 to 2 times more efficient than a manual workflow-and illustrate the value of employing multidisciplinary quantitative methods to calculate system-level measures of technology utility.</description><subject>Automation</subject><subject>Computer simulation</subject><subject>Computing time</subject><subject>Data analysis</subject><subject>Data entry</subject><subject>Data mining</subject><subject>Error correction</subject><subject>Extraction</subject><subject>Focusing</subject><subject>Human</subject><subject>Information content</subject><subject>Information systems</subject><subject>Mathematical models</subject><subject>Permissible error</subject><subject>Prototypes</subject><subject>Simulation</subject><issn>1044-7318</issn><issn>1532-7590</issn><issn>1044-7318</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>F2A</sourceid><recordid>eNqFkU1v2zAMho2hBZZ-_IMeDOyyi1Pqy7JORZZmbYEOO2w5C4wsFw5sKZOUdvn3k5Guhx62C0mQD18QfIviisCcQAPXBDiXjDRzCoTOpWgEbT4UMyIYraRQcJLrjFQT87E4i3ELABQEmxVmUX7zrR2qLxhtWy4cDofYx9J35Q879rhPfsSUJ7eYsLzto_HPNhxKdG25cilX69i7p3LxBi69S9alavU7BTSp9-6iOO1wiPbyNZ8X66-rn8v76vH73cNy8VgZDiRVSvEWrDUUawogTNs1StVEGWScbJC3tdoAZ9AIK8FSJXOb1mAlU4KbTc3Oi89H3V3wv_Y2Jj3me-0woLN-HzURFBijJMf_opw3Mv9PyIx-eodu_T7kP00UJUpSCZMgP1Im-BiD7fQu9COGgyagJ5P0X5P0ZJI-mpTXbo5rvet8GPHFh6HVCQ-DD11AZ_qo2T8V_gDNopX2</recordid><startdate>20131003</startdate><enddate>20131003</enddate><creator>Winder, Ransom</creator><creator>Haimson, Craig</creator><creator>Goldstein-Stewart, Jade</creator><creator>Grossman, Justin</creator><general>Taylor &amp; Francis</general><general>Lawrence Erlbaum Associates, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>E3H</scope><scope>F2A</scope><scope>JQ2</scope><scope>7SC</scope><scope>8FD</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>8BP</scope></search><sort><creationdate>20131003</creationdate><title>A Model-Based Analysis of Semiautomated Data Discovery and Entry Using Automated Content-Extraction</title><author>Winder, Ransom ; Haimson, Craig ; Goldstein-Stewart, Jade ; Grossman, Justin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c401t-994d0eec2a62005cdf899619ca341ba4d69b043085e70e297341260e73954cb63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Automation</topic><topic>Computer simulation</topic><topic>Computing time</topic><topic>Data analysis</topic><topic>Data entry</topic><topic>Data mining</topic><topic>Error correction</topic><topic>Extraction</topic><topic>Focusing</topic><topic>Human</topic><topic>Information content</topic><topic>Information systems</topic><topic>Mathematical models</topic><topic>Permissible error</topic><topic>Prototypes</topic><topic>Simulation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Winder, Ransom</creatorcontrib><creatorcontrib>Haimson, Craig</creatorcontrib><creatorcontrib>Goldstein-Stewart, Jade</creatorcontrib><creatorcontrib>Grossman, Justin</creatorcontrib><collection>CrossRef</collection><collection>Library &amp; Information Sciences Abstracts (LISA)</collection><collection>Library &amp; Information Science Abstracts (LISA)</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Library &amp; Information Sciences Abstracts (LISA) - CILIP Edition</collection><jtitle>International journal of human-computer interaction</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Winder, Ransom</au><au>Haimson, Craig</au><au>Goldstein-Stewart, Jade</au><au>Grossman, Justin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Model-Based Analysis of Semiautomated Data Discovery and Entry Using Automated Content-Extraction</atitle><jtitle>International journal of human-computer interaction</jtitle><date>2013-10-03</date><risdate>2013</risdate><volume>29</volume><issue>10</issue><spage>629</spage><epage>646</epage><pages>629-646</pages><issn>1044-7318</issn><eissn>1532-7590</eissn><eissn>1044-7318</eissn><coden>IJHIEC</coden><abstract>Content extraction systems can automatically extract entities and relations from raw text and use the information to populate knowledge bases, potentially eliminating the need for manual data discovery and entry. Unfortunately, content extraction is not sufficiently accurate for end users who require high trust in the information uploaded to their databases, creating a need for human validation and correction of extracted content. In this article the potential influence of content extraction errors on a prototype semiautomated system that will allow a human reviewer to correct and validate extracted information before uploading it was examined, focusing on the identification and correction of precision errors. Content extraction was applied to 6 different corpora, and a Goals, Operators, Methods, and Selection rules Language (GOMSL) model was used to simulate the activities of a human using the prototype system to review extraction results, correct precision errors, ignore spurious instances, and validate information. The simulated task completion rate of the semiautomated system model was compared with that of a second GOMSL model that simulates the steps required for finding and entering information manually. Results quantify the efficiency advantage of the semiautomated workflow-estimated to be roughly 1.5 to 2 times more efficient than a manual workflow-and illustrate the value of employing multidisciplinary quantitative methods to calculate system-level measures of technology utility.</abstract><cop>Norwood</cop><pub>Taylor &amp; Francis</pub><doi>10.1080/10447318.2012.758528</doi><tpages>18</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1044-7318
ispartof International journal of human-computer interaction, 2013-10, Vol.29 (10), p.629-646
issn 1044-7318
1532-7590
1044-7318
language eng
recordid cdi_proquest_journals_1421972700
source Library & Information Science Abstracts (LISA); Taylor and Francis Science and Technology Collection; BSC - Ebsco (Business Source Ultimate)
subjects Automation
Computer simulation
Computing time
Data analysis
Data entry
Data mining
Error correction
Extraction
Focusing
Human
Information content
Information systems
Mathematical models
Permissible error
Prototypes
Simulation
title A Model-Based Analysis of Semiautomated Data Discovery and Entry Using Automated Content-Extraction
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T15%3A50%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Model-Based%20Analysis%20of%20Semiautomated%20Data%20Discovery%20and%20Entry%20Using%20Automated%20Content-Extraction&rft.jtitle=International%20journal%20of%20human-computer%20interaction&rft.au=Winder,%20Ransom&rft.date=2013-10-03&rft.volume=29&rft.issue=10&rft.spage=629&rft.epage=646&rft.pages=629-646&rft.issn=1044-7318&rft.eissn=1532-7590&rft.coden=IJHIEC&rft_id=info:doi/10.1080/10447318.2012.758528&rft_dat=%3Cproquest_cross%3E1520332120%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c401t-994d0eec2a62005cdf899619ca341ba4d69b043085e70e297341260e73954cb63%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1421972700&rft_id=info:pmid/&rfr_iscdi=true