Loading…
A unified approach to robust estimation in finite population sampling
We argue that the conditional bias associated with a sample unit can be a useful measure of influence in finite population sampling. We use the conditional bias to derive robust estimators that are obtained by downweighting the most influential sample units. Under the model-based approach to inferen...
Saved in:
Published in: | Biometrika 2013-09, Vol.100 (3), p.555-569 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We argue that the conditional bias associated with a sample unit can be a useful measure of influence in finite population sampling. We use the conditional bias to derive robust estimators that are obtained by downweighting the most influential sample units. Under the model-based approach to inference, our proposed robust estimator is closely related to the well-known estimator of Chambers (1986). Under the design-based approach, it possesses the desirable feature of being applicable with most sampling designs used in practice. For stratified simple random sampling, it is essentially equivalent to the estimator of Kokic & Bell (1994). The proposed robust estimator depends on a tuning constant. In this paper, we propose a method for determining the tuning constant and show that the resulting estimator is consistent. Results from a simulation study suggest that our approach improves the efficiency of standard nonrobust estimators when the population contains units that may be influential if selected in the sample. |
---|---|
ISSN: | 0006-3444 1464-3510 |
DOI: | 10.1093/biomet/ast010 |