Loading…

Secrecy Outage Capacity of Fading Channels

This paper considers point-to-point secure communication over flat fading channels under an outage constraint. More specifically, we extend the definition of outage capacity to account for the secrecy constraint and obtain sharp characterizations of the corresponding fundamental limits under two dif...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on information theory 2013-09, Vol.59 (9), p.5379-5397
Main Authors: Gungor, Onur, Jian Tan, Koksal, Can Emre, El-Gamal, Hesham, Shroff, Ness B.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c363t-84b7a7334a03d80f67cb2c43749dfcfa5ec3c8e798a0eed0774c0c2ec67193ab3
cites cdi_FETCH-LOGICAL-c363t-84b7a7334a03d80f67cb2c43749dfcfa5ec3c8e798a0eed0774c0c2ec67193ab3
container_end_page 5397
container_issue 9
container_start_page 5379
container_title IEEE transactions on information theory
container_volume 59
creator Gungor, Onur
Jian Tan
Koksal, Can Emre
El-Gamal, Hesham
Shroff, Ness B.
description This paper considers point-to-point secure communication over flat fading channels under an outage constraint. More specifically, we extend the definition of outage capacity to account for the secrecy constraint and obtain sharp characterizations of the corresponding fundamental limits under two different assumptions on the transmitter channel state information (CSI). First, we find the outage secrecy capacity assuming that the transmitter has perfect knowledge of the legitimate and eavesdropper channel gains. In this scenario, the capacity achieving scheme relies on opportunistically exchanging private keys between the legitimate nodes. These keys are stored in a key buffer and later used to secure delay sensitive data using the Vernam's one time pad technique. We then extend our results to the more practical scenario where the transmitter is assumed to know only the legitimate channel gain. Here, our achievability arguments rely on privacy amplification techniques to generate secret key bits. In the two cases, we also characterize the optimal power control policies which, interestingly, turn out to be a judicious combination of channel inversion and the optimal ergodic strategy. Finally, we analyze the effect of key buffer overflow on the overall outage probability.
doi_str_mv 10.1109/TIT.2013.2265691
format article
fullrecord <record><control><sourceid>proquest_pasca</sourceid><recordid>TN_cdi_proquest_journals_1426852553</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6573412</ieee_id><sourcerecordid>3051472341</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-84b7a7334a03d80f67cb2c43749dfcfa5ec3c8e798a0eed0774c0c2ec67193ab3</originalsourceid><addsrcrecordid>eNo9kE1Lw0AQhhdRsFbvgpeAeBFS93s3RwlWC4UerOdlOpnUlJrU3fTQf29Ki6dhmOd9Bx7G7gWfCMGLl-VsOZFcqImU1thCXLCRMMblhTX6ko04Fz4vtPbX7CalzbBqI-SIPX8SRsJDttj3sKashB1g0x-yrs6mUDXtOiu_oW1pm27ZVQ3bRHfnOWZf07dl-ZHPF--z8nWeo7Kqz71eOXBKaeCq8ry2DlcStXK6qGqswRAq9OQKD5yo4s5p5CgJrROFgpUas8dT7y52v3tKfdh0-9gOL4PQ0nojjVEDxU8Uxi6lSHXYxeYH4iEIHo5GwmAkHI2Es5Eh8nQuhoSwrSO02KT_nHTWOWndwD2cuIaI_s_WOKWFVH_032eH</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1426852553</pqid></control><display><type>article</type><title>Secrecy Outage Capacity of Fading Channels</title><source>IEEE Xplore (Online service)</source><creator>Gungor, Onur ; Jian Tan ; Koksal, Can Emre ; El-Gamal, Hesham ; Shroff, Ness B.</creator><creatorcontrib>Gungor, Onur ; Jian Tan ; Koksal, Can Emre ; El-Gamal, Hesham ; Shroff, Ness B.</creatorcontrib><description>This paper considers point-to-point secure communication over flat fading channels under an outage constraint. More specifically, we extend the definition of outage capacity to account for the secrecy constraint and obtain sharp characterizations of the corresponding fundamental limits under two different assumptions on the transmitter channel state information (CSI). First, we find the outage secrecy capacity assuming that the transmitter has perfect knowledge of the legitimate and eavesdropper channel gains. In this scenario, the capacity achieving scheme relies on opportunistically exchanging private keys between the legitimate nodes. These keys are stored in a key buffer and later used to secure delay sensitive data using the Vernam's one time pad technique. We then extend our results to the more practical scenario where the transmitter is assumed to know only the legitimate channel gain. Here, our achievability arguments rely on privacy amplification techniques to generate secret key bits. In the two cases, we also characterize the optimal power control policies which, interestingly, turn out to be a judicious combination of channel inversion and the optimal ergodic strategy. Finally, we analyze the effect of key buffer overflow on the overall outage probability.</description><identifier>ISSN: 0018-9448</identifier><identifier>EISSN: 1557-9654</identifier><identifier>DOI: 10.1109/TIT.2013.2265691</identifier><identifier>CODEN: IETTAW</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Applied sciences ; Block fading channels ; channel state information ; Communication ; Delays ; Electronic eavesdropping ; Exact sciences and technology ; Fading ; information theoretic secrecy ; Information theory ; Information, signal and communications theory ; key queue ; Power control ; Privacy ; Radiocommunications ; Receivers ; Resource management ; secrecy outage capacity ; Secret ; Systems, networks and services of telecommunications ; Telecommunications ; Telecommunications and information theory ; Transmission and modulation (techniques and equipments) ; Transmitters ; Transmitters. Receivers</subject><ispartof>IEEE transactions on information theory, 2013-09, Vol.59 (9), p.5379-5397</ispartof><rights>2014 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Sep 2013</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-84b7a7334a03d80f67cb2c43749dfcfa5ec3c8e798a0eed0774c0c2ec67193ab3</citedby><cites>FETCH-LOGICAL-c363t-84b7a7334a03d80f67cb2c43749dfcfa5ec3c8e798a0eed0774c0c2ec67193ab3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6573412$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,54777</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=27677267$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Gungor, Onur</creatorcontrib><creatorcontrib>Jian Tan</creatorcontrib><creatorcontrib>Koksal, Can Emre</creatorcontrib><creatorcontrib>El-Gamal, Hesham</creatorcontrib><creatorcontrib>Shroff, Ness B.</creatorcontrib><title>Secrecy Outage Capacity of Fading Channels</title><title>IEEE transactions on information theory</title><addtitle>TIT</addtitle><description>This paper considers point-to-point secure communication over flat fading channels under an outage constraint. More specifically, we extend the definition of outage capacity to account for the secrecy constraint and obtain sharp characterizations of the corresponding fundamental limits under two different assumptions on the transmitter channel state information (CSI). First, we find the outage secrecy capacity assuming that the transmitter has perfect knowledge of the legitimate and eavesdropper channel gains. In this scenario, the capacity achieving scheme relies on opportunistically exchanging private keys between the legitimate nodes. These keys are stored in a key buffer and later used to secure delay sensitive data using the Vernam's one time pad technique. We then extend our results to the more practical scenario where the transmitter is assumed to know only the legitimate channel gain. Here, our achievability arguments rely on privacy amplification techniques to generate secret key bits. In the two cases, we also characterize the optimal power control policies which, interestingly, turn out to be a judicious combination of channel inversion and the optimal ergodic strategy. Finally, we analyze the effect of key buffer overflow on the overall outage probability.</description><subject>Applied sciences</subject><subject>Block fading channels</subject><subject>channel state information</subject><subject>Communication</subject><subject>Delays</subject><subject>Electronic eavesdropping</subject><subject>Exact sciences and technology</subject><subject>Fading</subject><subject>information theoretic secrecy</subject><subject>Information theory</subject><subject>Information, signal and communications theory</subject><subject>key queue</subject><subject>Power control</subject><subject>Privacy</subject><subject>Radiocommunications</subject><subject>Receivers</subject><subject>Resource management</subject><subject>secrecy outage capacity</subject><subject>Secret</subject><subject>Systems, networks and services of telecommunications</subject><subject>Telecommunications</subject><subject>Telecommunications and information theory</subject><subject>Transmission and modulation (techniques and equipments)</subject><subject>Transmitters</subject><subject>Transmitters. Receivers</subject><issn>0018-9448</issn><issn>1557-9654</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNo9kE1Lw0AQhhdRsFbvgpeAeBFS93s3RwlWC4UerOdlOpnUlJrU3fTQf29Ki6dhmOd9Bx7G7gWfCMGLl-VsOZFcqImU1thCXLCRMMblhTX6ko04Fz4vtPbX7CalzbBqI-SIPX8SRsJDttj3sKashB1g0x-yrs6mUDXtOiu_oW1pm27ZVQ3bRHfnOWZf07dl-ZHPF--z8nWeo7Kqz71eOXBKaeCq8ry2DlcStXK6qGqswRAq9OQKD5yo4s5p5CgJrROFgpUas8dT7y52v3tKfdh0-9gOL4PQ0nojjVEDxU8Uxi6lSHXYxeYH4iEIHo5GwmAkHI2Es5Eh8nQuhoSwrSO02KT_nHTWOWndwD2cuIaI_s_WOKWFVH_032eH</recordid><startdate>20130901</startdate><enddate>20130901</enddate><creator>Gungor, Onur</creator><creator>Jian Tan</creator><creator>Koksal, Can Emre</creator><creator>El-Gamal, Hesham</creator><creator>Shroff, Ness B.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20130901</creationdate><title>Secrecy Outage Capacity of Fading Channels</title><author>Gungor, Onur ; Jian Tan ; Koksal, Can Emre ; El-Gamal, Hesham ; Shroff, Ness B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-84b7a7334a03d80f67cb2c43749dfcfa5ec3c8e798a0eed0774c0c2ec67193ab3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Applied sciences</topic><topic>Block fading channels</topic><topic>channel state information</topic><topic>Communication</topic><topic>Delays</topic><topic>Electronic eavesdropping</topic><topic>Exact sciences and technology</topic><topic>Fading</topic><topic>information theoretic secrecy</topic><topic>Information theory</topic><topic>Information, signal and communications theory</topic><topic>key queue</topic><topic>Power control</topic><topic>Privacy</topic><topic>Radiocommunications</topic><topic>Receivers</topic><topic>Resource management</topic><topic>secrecy outage capacity</topic><topic>Secret</topic><topic>Systems, networks and services of telecommunications</topic><topic>Telecommunications</topic><topic>Telecommunications and information theory</topic><topic>Transmission and modulation (techniques and equipments)</topic><topic>Transmitters</topic><topic>Transmitters. Receivers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gungor, Onur</creatorcontrib><creatorcontrib>Jian Tan</creatorcontrib><creatorcontrib>Koksal, Can Emre</creatorcontrib><creatorcontrib>El-Gamal, Hesham</creatorcontrib><creatorcontrib>Shroff, Ness B.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore (Online service)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on information theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gungor, Onur</au><au>Jian Tan</au><au>Koksal, Can Emre</au><au>El-Gamal, Hesham</au><au>Shroff, Ness B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Secrecy Outage Capacity of Fading Channels</atitle><jtitle>IEEE transactions on information theory</jtitle><stitle>TIT</stitle><date>2013-09-01</date><risdate>2013</risdate><volume>59</volume><issue>9</issue><spage>5379</spage><epage>5397</epage><pages>5379-5397</pages><issn>0018-9448</issn><eissn>1557-9654</eissn><coden>IETTAW</coden><abstract>This paper considers point-to-point secure communication over flat fading channels under an outage constraint. More specifically, we extend the definition of outage capacity to account for the secrecy constraint and obtain sharp characterizations of the corresponding fundamental limits under two different assumptions on the transmitter channel state information (CSI). First, we find the outage secrecy capacity assuming that the transmitter has perfect knowledge of the legitimate and eavesdropper channel gains. In this scenario, the capacity achieving scheme relies on opportunistically exchanging private keys between the legitimate nodes. These keys are stored in a key buffer and later used to secure delay sensitive data using the Vernam's one time pad technique. We then extend our results to the more practical scenario where the transmitter is assumed to know only the legitimate channel gain. Here, our achievability arguments rely on privacy amplification techniques to generate secret key bits. In the two cases, we also characterize the optimal power control policies which, interestingly, turn out to be a judicious combination of channel inversion and the optimal ergodic strategy. Finally, we analyze the effect of key buffer overflow on the overall outage probability.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TIT.2013.2265691</doi><tpages>19</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0018-9448
ispartof IEEE transactions on information theory, 2013-09, Vol.59 (9), p.5379-5397
issn 0018-9448
1557-9654
language eng
recordid cdi_proquest_journals_1426852553
source IEEE Xplore (Online service)
subjects Applied sciences
Block fading channels
channel state information
Communication
Delays
Electronic eavesdropping
Exact sciences and technology
Fading
information theoretic secrecy
Information theory
Information, signal and communications theory
key queue
Power control
Privacy
Radiocommunications
Receivers
Resource management
secrecy outage capacity
Secret
Systems, networks and services of telecommunications
Telecommunications
Telecommunications and information theory
Transmission and modulation (techniques and equipments)
Transmitters
Transmitters. Receivers
title Secrecy Outage Capacity of Fading Channels
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T22%3A03%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Secrecy%20Outage%20Capacity%20of%20Fading%20Channels&rft.jtitle=IEEE%20transactions%20on%20information%20theory&rft.au=Gungor,%20Onur&rft.date=2013-09-01&rft.volume=59&rft.issue=9&rft.spage=5379&rft.epage=5397&rft.pages=5379-5397&rft.issn=0018-9448&rft.eissn=1557-9654&rft.coden=IETTAW&rft_id=info:doi/10.1109/TIT.2013.2265691&rft_dat=%3Cproquest_pasca%3E3051472341%3C/proquest_pasca%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c363t-84b7a7334a03d80f67cb2c43749dfcfa5ec3c8e798a0eed0774c0c2ec67193ab3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1426852553&rft_id=info:pmid/&rft_ieee_id=6573412&rfr_iscdi=true