Loading…
Secrecy Outage Capacity of Fading Channels
This paper considers point-to-point secure communication over flat fading channels under an outage constraint. More specifically, we extend the definition of outage capacity to account for the secrecy constraint and obtain sharp characterizations of the corresponding fundamental limits under two dif...
Saved in:
Published in: | IEEE transactions on information theory 2013-09, Vol.59 (9), p.5379-5397 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c363t-84b7a7334a03d80f67cb2c43749dfcfa5ec3c8e798a0eed0774c0c2ec67193ab3 |
---|---|
cites | cdi_FETCH-LOGICAL-c363t-84b7a7334a03d80f67cb2c43749dfcfa5ec3c8e798a0eed0774c0c2ec67193ab3 |
container_end_page | 5397 |
container_issue | 9 |
container_start_page | 5379 |
container_title | IEEE transactions on information theory |
container_volume | 59 |
creator | Gungor, Onur Jian Tan Koksal, Can Emre El-Gamal, Hesham Shroff, Ness B. |
description | This paper considers point-to-point secure communication over flat fading channels under an outage constraint. More specifically, we extend the definition of outage capacity to account for the secrecy constraint and obtain sharp characterizations of the corresponding fundamental limits under two different assumptions on the transmitter channel state information (CSI). First, we find the outage secrecy capacity assuming that the transmitter has perfect knowledge of the legitimate and eavesdropper channel gains. In this scenario, the capacity achieving scheme relies on opportunistically exchanging private keys between the legitimate nodes. These keys are stored in a key buffer and later used to secure delay sensitive data using the Vernam's one time pad technique. We then extend our results to the more practical scenario where the transmitter is assumed to know only the legitimate channel gain. Here, our achievability arguments rely on privacy amplification techniques to generate secret key bits. In the two cases, we also characterize the optimal power control policies which, interestingly, turn out to be a judicious combination of channel inversion and the optimal ergodic strategy. Finally, we analyze the effect of key buffer overflow on the overall outage probability. |
doi_str_mv | 10.1109/TIT.2013.2265691 |
format | article |
fullrecord | <record><control><sourceid>proquest_pasca</sourceid><recordid>TN_cdi_proquest_journals_1426852553</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6573412</ieee_id><sourcerecordid>3051472341</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-84b7a7334a03d80f67cb2c43749dfcfa5ec3c8e798a0eed0774c0c2ec67193ab3</originalsourceid><addsrcrecordid>eNo9kE1Lw0AQhhdRsFbvgpeAeBFS93s3RwlWC4UerOdlOpnUlJrU3fTQf29Ki6dhmOd9Bx7G7gWfCMGLl-VsOZFcqImU1thCXLCRMMblhTX6ko04Fz4vtPbX7CalzbBqI-SIPX8SRsJDttj3sKashB1g0x-yrs6mUDXtOiu_oW1pm27ZVQ3bRHfnOWZf07dl-ZHPF--z8nWeo7Kqz71eOXBKaeCq8ry2DlcStXK6qGqswRAq9OQKD5yo4s5p5CgJrROFgpUas8dT7y52v3tKfdh0-9gOL4PQ0nojjVEDxU8Uxi6lSHXYxeYH4iEIHo5GwmAkHI2Es5Eh8nQuhoSwrSO02KT_nHTWOWndwD2cuIaI_s_WOKWFVH_032eH</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1426852553</pqid></control><display><type>article</type><title>Secrecy Outage Capacity of Fading Channels</title><source>IEEE Xplore (Online service)</source><creator>Gungor, Onur ; Jian Tan ; Koksal, Can Emre ; El-Gamal, Hesham ; Shroff, Ness B.</creator><creatorcontrib>Gungor, Onur ; Jian Tan ; Koksal, Can Emre ; El-Gamal, Hesham ; Shroff, Ness B.</creatorcontrib><description>This paper considers point-to-point secure communication over flat fading channels under an outage constraint. More specifically, we extend the definition of outage capacity to account for the secrecy constraint and obtain sharp characterizations of the corresponding fundamental limits under two different assumptions on the transmitter channel state information (CSI). First, we find the outage secrecy capacity assuming that the transmitter has perfect knowledge of the legitimate and eavesdropper channel gains. In this scenario, the capacity achieving scheme relies on opportunistically exchanging private keys between the legitimate nodes. These keys are stored in a key buffer and later used to secure delay sensitive data using the Vernam's one time pad technique. We then extend our results to the more practical scenario where the transmitter is assumed to know only the legitimate channel gain. Here, our achievability arguments rely on privacy amplification techniques to generate secret key bits. In the two cases, we also characterize the optimal power control policies which, interestingly, turn out to be a judicious combination of channel inversion and the optimal ergodic strategy. Finally, we analyze the effect of key buffer overflow on the overall outage probability.</description><identifier>ISSN: 0018-9448</identifier><identifier>EISSN: 1557-9654</identifier><identifier>DOI: 10.1109/TIT.2013.2265691</identifier><identifier>CODEN: IETTAW</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Applied sciences ; Block fading channels ; channel state information ; Communication ; Delays ; Electronic eavesdropping ; Exact sciences and technology ; Fading ; information theoretic secrecy ; Information theory ; Information, signal and communications theory ; key queue ; Power control ; Privacy ; Radiocommunications ; Receivers ; Resource management ; secrecy outage capacity ; Secret ; Systems, networks and services of telecommunications ; Telecommunications ; Telecommunications and information theory ; Transmission and modulation (techniques and equipments) ; Transmitters ; Transmitters. Receivers</subject><ispartof>IEEE transactions on information theory, 2013-09, Vol.59 (9), p.5379-5397</ispartof><rights>2014 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Sep 2013</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-84b7a7334a03d80f67cb2c43749dfcfa5ec3c8e798a0eed0774c0c2ec67193ab3</citedby><cites>FETCH-LOGICAL-c363t-84b7a7334a03d80f67cb2c43749dfcfa5ec3c8e798a0eed0774c0c2ec67193ab3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6573412$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,54777</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27677267$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Gungor, Onur</creatorcontrib><creatorcontrib>Jian Tan</creatorcontrib><creatorcontrib>Koksal, Can Emre</creatorcontrib><creatorcontrib>El-Gamal, Hesham</creatorcontrib><creatorcontrib>Shroff, Ness B.</creatorcontrib><title>Secrecy Outage Capacity of Fading Channels</title><title>IEEE transactions on information theory</title><addtitle>TIT</addtitle><description>This paper considers point-to-point secure communication over flat fading channels under an outage constraint. More specifically, we extend the definition of outage capacity to account for the secrecy constraint and obtain sharp characterizations of the corresponding fundamental limits under two different assumptions on the transmitter channel state information (CSI). First, we find the outage secrecy capacity assuming that the transmitter has perfect knowledge of the legitimate and eavesdropper channel gains. In this scenario, the capacity achieving scheme relies on opportunistically exchanging private keys between the legitimate nodes. These keys are stored in a key buffer and later used to secure delay sensitive data using the Vernam's one time pad technique. We then extend our results to the more practical scenario where the transmitter is assumed to know only the legitimate channel gain. Here, our achievability arguments rely on privacy amplification techniques to generate secret key bits. In the two cases, we also characterize the optimal power control policies which, interestingly, turn out to be a judicious combination of channel inversion and the optimal ergodic strategy. Finally, we analyze the effect of key buffer overflow on the overall outage probability.</description><subject>Applied sciences</subject><subject>Block fading channels</subject><subject>channel state information</subject><subject>Communication</subject><subject>Delays</subject><subject>Electronic eavesdropping</subject><subject>Exact sciences and technology</subject><subject>Fading</subject><subject>information theoretic secrecy</subject><subject>Information theory</subject><subject>Information, signal and communications theory</subject><subject>key queue</subject><subject>Power control</subject><subject>Privacy</subject><subject>Radiocommunications</subject><subject>Receivers</subject><subject>Resource management</subject><subject>secrecy outage capacity</subject><subject>Secret</subject><subject>Systems, networks and services of telecommunications</subject><subject>Telecommunications</subject><subject>Telecommunications and information theory</subject><subject>Transmission and modulation (techniques and equipments)</subject><subject>Transmitters</subject><subject>Transmitters. Receivers</subject><issn>0018-9448</issn><issn>1557-9654</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNo9kE1Lw0AQhhdRsFbvgpeAeBFS93s3RwlWC4UerOdlOpnUlJrU3fTQf29Ki6dhmOd9Bx7G7gWfCMGLl-VsOZFcqImU1thCXLCRMMblhTX6ko04Fz4vtPbX7CalzbBqI-SIPX8SRsJDttj3sKashB1g0x-yrs6mUDXtOiu_oW1pm27ZVQ3bRHfnOWZf07dl-ZHPF--z8nWeo7Kqz71eOXBKaeCq8ry2DlcStXK6qGqswRAq9OQKD5yo4s5p5CgJrROFgpUas8dT7y52v3tKfdh0-9gOL4PQ0nojjVEDxU8Uxi6lSHXYxeYH4iEIHo5GwmAkHI2Es5Eh8nQuhoSwrSO02KT_nHTWOWndwD2cuIaI_s_WOKWFVH_032eH</recordid><startdate>20130901</startdate><enddate>20130901</enddate><creator>Gungor, Onur</creator><creator>Jian Tan</creator><creator>Koksal, Can Emre</creator><creator>El-Gamal, Hesham</creator><creator>Shroff, Ness B.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20130901</creationdate><title>Secrecy Outage Capacity of Fading Channels</title><author>Gungor, Onur ; Jian Tan ; Koksal, Can Emre ; El-Gamal, Hesham ; Shroff, Ness B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-84b7a7334a03d80f67cb2c43749dfcfa5ec3c8e798a0eed0774c0c2ec67193ab3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Applied sciences</topic><topic>Block fading channels</topic><topic>channel state information</topic><topic>Communication</topic><topic>Delays</topic><topic>Electronic eavesdropping</topic><topic>Exact sciences and technology</topic><topic>Fading</topic><topic>information theoretic secrecy</topic><topic>Information theory</topic><topic>Information, signal and communications theory</topic><topic>key queue</topic><topic>Power control</topic><topic>Privacy</topic><topic>Radiocommunications</topic><topic>Receivers</topic><topic>Resource management</topic><topic>secrecy outage capacity</topic><topic>Secret</topic><topic>Systems, networks and services of telecommunications</topic><topic>Telecommunications</topic><topic>Telecommunications and information theory</topic><topic>Transmission and modulation (techniques and equipments)</topic><topic>Transmitters</topic><topic>Transmitters. Receivers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gungor, Onur</creatorcontrib><creatorcontrib>Jian Tan</creatorcontrib><creatorcontrib>Koksal, Can Emre</creatorcontrib><creatorcontrib>El-Gamal, Hesham</creatorcontrib><creatorcontrib>Shroff, Ness B.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore (Online service)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on information theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gungor, Onur</au><au>Jian Tan</au><au>Koksal, Can Emre</au><au>El-Gamal, Hesham</au><au>Shroff, Ness B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Secrecy Outage Capacity of Fading Channels</atitle><jtitle>IEEE transactions on information theory</jtitle><stitle>TIT</stitle><date>2013-09-01</date><risdate>2013</risdate><volume>59</volume><issue>9</issue><spage>5379</spage><epage>5397</epage><pages>5379-5397</pages><issn>0018-9448</issn><eissn>1557-9654</eissn><coden>IETTAW</coden><abstract>This paper considers point-to-point secure communication over flat fading channels under an outage constraint. More specifically, we extend the definition of outage capacity to account for the secrecy constraint and obtain sharp characterizations of the corresponding fundamental limits under two different assumptions on the transmitter channel state information (CSI). First, we find the outage secrecy capacity assuming that the transmitter has perfect knowledge of the legitimate and eavesdropper channel gains. In this scenario, the capacity achieving scheme relies on opportunistically exchanging private keys between the legitimate nodes. These keys are stored in a key buffer and later used to secure delay sensitive data using the Vernam's one time pad technique. We then extend our results to the more practical scenario where the transmitter is assumed to know only the legitimate channel gain. Here, our achievability arguments rely on privacy amplification techniques to generate secret key bits. In the two cases, we also characterize the optimal power control policies which, interestingly, turn out to be a judicious combination of channel inversion and the optimal ergodic strategy. Finally, we analyze the effect of key buffer overflow on the overall outage probability.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TIT.2013.2265691</doi><tpages>19</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0018-9448 |
ispartof | IEEE transactions on information theory, 2013-09, Vol.59 (9), p.5379-5397 |
issn | 0018-9448 1557-9654 |
language | eng |
recordid | cdi_proquest_journals_1426852553 |
source | IEEE Xplore (Online service) |
subjects | Applied sciences Block fading channels channel state information Communication Delays Electronic eavesdropping Exact sciences and technology Fading information theoretic secrecy Information theory Information, signal and communications theory key queue Power control Privacy Radiocommunications Receivers Resource management secrecy outage capacity Secret Systems, networks and services of telecommunications Telecommunications Telecommunications and information theory Transmission and modulation (techniques and equipments) Transmitters Transmitters. Receivers |
title | Secrecy Outage Capacity of Fading Channels |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T22%3A03%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Secrecy%20Outage%20Capacity%20of%20Fading%20Channels&rft.jtitle=IEEE%20transactions%20on%20information%20theory&rft.au=Gungor,%20Onur&rft.date=2013-09-01&rft.volume=59&rft.issue=9&rft.spage=5379&rft.epage=5397&rft.pages=5379-5397&rft.issn=0018-9448&rft.eissn=1557-9654&rft.coden=IETTAW&rft_id=info:doi/10.1109/TIT.2013.2265691&rft_dat=%3Cproquest_pasca%3E3051472341%3C/proquest_pasca%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c363t-84b7a7334a03d80f67cb2c43749dfcfa5ec3c8e798a0eed0774c0c2ec67193ab3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1426852553&rft_id=info:pmid/&rft_ieee_id=6573412&rfr_iscdi=true |