Loading…
Causal Inference by Independent Component Analysis: Theory and Applications
Structural vector‐autoregressive models are potentially very useful tools for guiding both macro‐ and microeconomic policy. In this study, we present a recently developed method for estimating such models, which uses non‐normality to recover the causal structure underlying the observations. We show...
Saved in:
Published in: | Oxford bulletin of economics and statistics 2013-10, Vol.75 (5), p.705-730 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Structural vector‐autoregressive models are potentially very useful tools for guiding both macro‐ and microeconomic policy. In this study, we present a recently developed method for estimating such models, which uses non‐normality to recover the causal structure underlying the observations. We show how the method can be applied to both microeconomic data (to study the processes of firm growth and firm performance) and macroeconomic data (to analyse the effects of monetary policy). |
---|---|
ISSN: | 0305-9049 1468-0084 |
DOI: | 10.1111/j.1468-0084.2012.00710.x |