Loading…

Lethal effects on different marine organisms, associated with sediment–seawater acidification deriving from CO2 leakage

CO2 leakages during carbon capture and storage in sub-seabed geological structures could produce potential impacts on the marine environment. To study lethal effects on marine organisms attributable to CO2 seawater acidification, a bubbling CO2 system was designed enabling a battery of different tes...

Full description

Saved in:
Bibliographic Details
Published in:Environmental science and pollution research international 2012-08, Vol.19 (7), p.2550-2560
Main Authors: Basallote, M. D, Rodríguez-Romero, A, Blasco, J, DelValls, A, Riba, I
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:CO2 leakages during carbon capture and storage in sub-seabed geological structures could produce potential impacts on the marine environment. To study lethal effects on marine organisms attributable to CO2 seawater acidification, a bubbling CO2 system was designed enabling a battery of different tests to be conducted, under laboratory conditions, employing various pH treatments (8.0, 7.5, 7.0, 6.5, 6.0, and 5.5). Assays were performed of three exposure routes (seawater, whole sediment, and sediment elutriate). Individuals of the clam (Ruditapes philippinarum) and early-life stages of the gilthead seabream, Sparus aurata, were exposed for 10 days and 72 h, respectively, to acidified clean seawater. S. aurata larvae were also exposed to acidified elutriate samples, and polychaete organisms of the specie Hediste diversicolor and clams R. philippinarum were also exposed for 10 days to estuarine whole sediment. In the fish larvae elutriate test, 100 % mortality was recorded at pH 6.0, after 48 h of exposure. Similar results were obtained in the clam sediment exposure test. In the other organisms, significant mortality (p 
ISSN:0944-1344
1614-7499
DOI:10.1007/s11356-012-0899-8