Loading…
Influence of Temperature and Strain Rate on Tensile Deformation and Fracture Behavior of P92 Ferritic Steel
Tensile tests were performed at strain rates ranging from 3.16 × 10 −5 to 1.26 × 10 −3 s −1 over a temperature range of 300 K to 923 K (27 °C to 650 °C) to examine the effects of temperature and strain rate on tensile deformation and fracture behavior of P92 ferritic steel. The variations of flow s...
Saved in:
Published in: | Metallurgical and materials transactions. A, Physical metallurgy and materials science Physical metallurgy and materials science, 2013-11, Vol.44 (11), p.4979-4992 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c346t-75d0a271191b38b97bf96713aeccd10f6856c97a046426be7be2782bba5bb2153 |
---|---|
cites | cdi_FETCH-LOGICAL-c346t-75d0a271191b38b97bf96713aeccd10f6856c97a046426be7be2782bba5bb2153 |
container_end_page | 4992 |
container_issue | 11 |
container_start_page | 4979 |
container_title | Metallurgical and materials transactions. A, Physical metallurgy and materials science |
container_volume | 44 |
creator | Choudhary, B. K. Samuel, E. Isaac Sainath, G. Christopher, J. Mathew, M. D. |
description | Tensile tests were performed at strain rates ranging from 3.16 × 10
−5
to 1.26 × 10
−3
s
−1
over a temperature range of 300 K to 923 K (27 °C to 650 °C) to examine the effects of temperature and strain rate on tensile deformation and fracture behavior of P92 ferritic steel. The variations of flow stress/strength values, work hardening rate, and tensile ductility with respect to temperature exhibited distinct three temperature regimes. The fracture mode remained transgranular. The steel exhibited serrated flow, an important manifestation of dynamic strain aging, along with anomalous variations in tensile properties in terms of peaks in flow stress/strength and work hardening rate, negative strain rate sensitivity, and ductility minima at intermediate temperatures. At high temperatures, the rapid decrease in flow stress/strength values and work hardening rate, and increase in ductility with increase in temperature and decrease in strain rate, indicated the dominance of dynamic recovery. |
doi_str_mv | 10.1007/s11661-013-1869-6 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1435823969</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3080568501</sourcerecordid><originalsourceid>FETCH-LOGICAL-c346t-75d0a271191b38b97bf96713aeccd10f6856c97a046426be7be2782bba5bb2153</originalsourceid><addsrcrecordid>eNp1kM1OwzAQhCMEEqXwANwiIY4Br53Y8REKhUqVQFDOlu1uICV1ip0g8fY4tEJcOPlnZr5dTZKcArkAQsRlAOAcMgIsg5LLjO8lIyjy-JI52Y93IlhWcMoOk6MQVoQQkIyPkveZq5oencW0rdIFrjfoddd7TLVbps-d17VLn3QXZRdlF-oG0xusWr_WXR3_BtvUa_uTucY3_Vm3fmA9SppO0fu6q20EITbHyUGlm4Anu3OcvExvF5P7bP5wN5tczTPLct5lolgSTQWABMNKI4WpJBfANFq7BFLxsuBWCk1ynlNuUBikoqTG6MIYCgUbJ2db7sa3Hz2GTq3a3rs4UkHOipIyyWV0wdZlfRuCx0ptfL3W_ksBUUOnatupip2qoVPFY-Z8R9bB6qby2tk6_AbjGkxwXkYf3fpClNwr-j8b_Av_Bgathao</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1435823969</pqid></control><display><type>article</type><title>Influence of Temperature and Strain Rate on Tensile Deformation and Fracture Behavior of P92 Ferritic Steel</title><source>Springer Link</source><creator>Choudhary, B. K. ; Samuel, E. Isaac ; Sainath, G. ; Christopher, J. ; Mathew, M. D.</creator><creatorcontrib>Choudhary, B. K. ; Samuel, E. Isaac ; Sainath, G. ; Christopher, J. ; Mathew, M. D.</creatorcontrib><description>Tensile tests were performed at strain rates ranging from 3.16 × 10
−5
to 1.26 × 10
−3
s
−1
over a temperature range of 300 K to 923 K (27 °C to 650 °C) to examine the effects of temperature and strain rate on tensile deformation and fracture behavior of P92 ferritic steel. The variations of flow stress/strength values, work hardening rate, and tensile ductility with respect to temperature exhibited distinct three temperature regimes. The fracture mode remained transgranular. The steel exhibited serrated flow, an important manifestation of dynamic strain aging, along with anomalous variations in tensile properties in terms of peaks in flow stress/strength and work hardening rate, negative strain rate sensitivity, and ductility minima at intermediate temperatures. At high temperatures, the rapid decrease in flow stress/strength values and work hardening rate, and increase in ductility with increase in temperature and decrease in strain rate, indicated the dominance of dynamic recovery.</description><identifier>ISSN: 1073-5623</identifier><identifier>EISSN: 1543-1940</identifier><identifier>DOI: 10.1007/s11661-013-1869-6</identifier><identifier>CODEN: MMTAEB</identifier><language>eng</language><publisher>Boston: Springer US</publisher><subject>Applied sciences ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Deformation ; Exact sciences and technology ; Ferritic stainless steel ; Fracture mechanics ; Fractures ; Materials Science ; Mechanical properties and methods of testing. Rheology. Fracture mechanics. Tribology ; Metallic Materials ; Metals. Metallurgy ; Nanotechnology ; Strain rate ; Structural Materials ; Surfaces and Interfaces ; Temperature effects ; Tensile strength ; Thin Films</subject><ispartof>Metallurgical and materials transactions. A, Physical metallurgy and materials science, 2013-11, Vol.44 (11), p.4979-4992</ispartof><rights>The Minerals, Metals & Materials Society and ASM International 2013</rights><rights>2014 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c346t-75d0a271191b38b97bf96713aeccd10f6856c97a046426be7be2782bba5bb2153</citedby><cites>FETCH-LOGICAL-c346t-75d0a271191b38b97bf96713aeccd10f6856c97a046426be7be2782bba5bb2153</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27837668$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Choudhary, B. K.</creatorcontrib><creatorcontrib>Samuel, E. Isaac</creatorcontrib><creatorcontrib>Sainath, G.</creatorcontrib><creatorcontrib>Christopher, J.</creatorcontrib><creatorcontrib>Mathew, M. D.</creatorcontrib><title>Influence of Temperature and Strain Rate on Tensile Deformation and Fracture Behavior of P92 Ferritic Steel</title><title>Metallurgical and materials transactions. A, Physical metallurgy and materials science</title><addtitle>Metall Mater Trans A</addtitle><description>Tensile tests were performed at strain rates ranging from 3.16 × 10
−5
to 1.26 × 10
−3
s
−1
over a temperature range of 300 K to 923 K (27 °C to 650 °C) to examine the effects of temperature and strain rate on tensile deformation and fracture behavior of P92 ferritic steel. The variations of flow stress/strength values, work hardening rate, and tensile ductility with respect to temperature exhibited distinct three temperature regimes. The fracture mode remained transgranular. The steel exhibited serrated flow, an important manifestation of dynamic strain aging, along with anomalous variations in tensile properties in terms of peaks in flow stress/strength and work hardening rate, negative strain rate sensitivity, and ductility minima at intermediate temperatures. At high temperatures, the rapid decrease in flow stress/strength values and work hardening rate, and increase in ductility with increase in temperature and decrease in strain rate, indicated the dominance of dynamic recovery.</description><subject>Applied sciences</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Deformation</subject><subject>Exact sciences and technology</subject><subject>Ferritic stainless steel</subject><subject>Fracture mechanics</subject><subject>Fractures</subject><subject>Materials Science</subject><subject>Mechanical properties and methods of testing. Rheology. Fracture mechanics. Tribology</subject><subject>Metallic Materials</subject><subject>Metals. Metallurgy</subject><subject>Nanotechnology</subject><subject>Strain rate</subject><subject>Structural Materials</subject><subject>Surfaces and Interfaces</subject><subject>Temperature effects</subject><subject>Tensile strength</subject><subject>Thin Films</subject><issn>1073-5623</issn><issn>1543-1940</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNp1kM1OwzAQhCMEEqXwANwiIY4Br53Y8REKhUqVQFDOlu1uICV1ip0g8fY4tEJcOPlnZr5dTZKcArkAQsRlAOAcMgIsg5LLjO8lIyjy-JI52Y93IlhWcMoOk6MQVoQQkIyPkveZq5oencW0rdIFrjfoddd7TLVbps-d17VLn3QXZRdlF-oG0xusWr_WXR3_BtvUa_uTucY3_Vm3fmA9SppO0fu6q20EITbHyUGlm4Anu3OcvExvF5P7bP5wN5tczTPLct5lolgSTQWABMNKI4WpJBfANFq7BFLxsuBWCk1ynlNuUBikoqTG6MIYCgUbJ2db7sa3Hz2GTq3a3rs4UkHOipIyyWV0wdZlfRuCx0ptfL3W_ksBUUOnatupip2qoVPFY-Z8R9bB6qby2tk6_AbjGkxwXkYf3fpClNwr-j8b_Av_Bgathao</recordid><startdate>20131101</startdate><enddate>20131101</enddate><creator>Choudhary, B. K.</creator><creator>Samuel, E. Isaac</creator><creator>Sainath, G.</creator><creator>Christopher, J.</creator><creator>Mathew, M. D.</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>4T-</scope><scope>4U-</scope><scope>7SR</scope><scope>7XB</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>L6V</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0X</scope></search><sort><creationdate>20131101</creationdate><title>Influence of Temperature and Strain Rate on Tensile Deformation and Fracture Behavior of P92 Ferritic Steel</title><author>Choudhary, B. K. ; Samuel, E. Isaac ; Sainath, G. ; Christopher, J. ; Mathew, M. D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c346t-75d0a271191b38b97bf96713aeccd10f6856c97a046426be7be2782bba5bb2153</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Applied sciences</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Deformation</topic><topic>Exact sciences and technology</topic><topic>Ferritic stainless steel</topic><topic>Fracture mechanics</topic><topic>Fractures</topic><topic>Materials Science</topic><topic>Mechanical properties and methods of testing. Rheology. Fracture mechanics. Tribology</topic><topic>Metallic Materials</topic><topic>Metals. Metallurgy</topic><topic>Nanotechnology</topic><topic>Strain rate</topic><topic>Structural Materials</topic><topic>Surfaces and Interfaces</topic><topic>Temperature effects</topic><topic>Tensile strength</topic><topic>Thin Films</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Choudhary, B. K.</creatorcontrib><creatorcontrib>Samuel, E. Isaac</creatorcontrib><creatorcontrib>Sainath, G.</creatorcontrib><creatorcontrib>Christopher, J.</creatorcontrib><creatorcontrib>Mathew, M. D.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Docstoc</collection><collection>University Readers</collection><collection>Engineered Materials Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>https://resources.nclive.org/materials</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Research Library</collection><collection>ProQuest Science Journals</collection><collection>ProQuest Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Materials science collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><jtitle>Metallurgical and materials transactions. A, Physical metallurgy and materials science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Choudhary, B. K.</au><au>Samuel, E. Isaac</au><au>Sainath, G.</au><au>Christopher, J.</au><au>Mathew, M. D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Influence of Temperature and Strain Rate on Tensile Deformation and Fracture Behavior of P92 Ferritic Steel</atitle><jtitle>Metallurgical and materials transactions. A, Physical metallurgy and materials science</jtitle><stitle>Metall Mater Trans A</stitle><date>2013-11-01</date><risdate>2013</risdate><volume>44</volume><issue>11</issue><spage>4979</spage><epage>4992</epage><pages>4979-4992</pages><issn>1073-5623</issn><eissn>1543-1940</eissn><coden>MMTAEB</coden><abstract>Tensile tests were performed at strain rates ranging from 3.16 × 10
−5
to 1.26 × 10
−3
s
−1
over a temperature range of 300 K to 923 K (27 °C to 650 °C) to examine the effects of temperature and strain rate on tensile deformation and fracture behavior of P92 ferritic steel. The variations of flow stress/strength values, work hardening rate, and tensile ductility with respect to temperature exhibited distinct three temperature regimes. The fracture mode remained transgranular. The steel exhibited serrated flow, an important manifestation of dynamic strain aging, along with anomalous variations in tensile properties in terms of peaks in flow stress/strength and work hardening rate, negative strain rate sensitivity, and ductility minima at intermediate temperatures. At high temperatures, the rapid decrease in flow stress/strength values and work hardening rate, and increase in ductility with increase in temperature and decrease in strain rate, indicated the dominance of dynamic recovery.</abstract><cop>Boston</cop><pub>Springer US</pub><doi>10.1007/s11661-013-1869-6</doi><tpages>14</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1073-5623 |
ispartof | Metallurgical and materials transactions. A, Physical metallurgy and materials science, 2013-11, Vol.44 (11), p.4979-4992 |
issn | 1073-5623 1543-1940 |
language | eng |
recordid | cdi_proquest_journals_1435823969 |
source | Springer Link |
subjects | Applied sciences Characterization and Evaluation of Materials Chemistry and Materials Science Deformation Exact sciences and technology Ferritic stainless steel Fracture mechanics Fractures Materials Science Mechanical properties and methods of testing. Rheology. Fracture mechanics. Tribology Metallic Materials Metals. Metallurgy Nanotechnology Strain rate Structural Materials Surfaces and Interfaces Temperature effects Tensile strength Thin Films |
title | Influence of Temperature and Strain Rate on Tensile Deformation and Fracture Behavior of P92 Ferritic Steel |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T23%3A05%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Influence%20of%20Temperature%20and%20Strain%20Rate%20on%20Tensile%20Deformation%20and%20Fracture%20Behavior%20of%20P92%20Ferritic%20Steel&rft.jtitle=Metallurgical%20and%20materials%20transactions.%20A,%20Physical%20metallurgy%20and%20materials%20science&rft.au=Choudhary,%20B.%20K.&rft.date=2013-11-01&rft.volume=44&rft.issue=11&rft.spage=4979&rft.epage=4992&rft.pages=4979-4992&rft.issn=1073-5623&rft.eissn=1543-1940&rft.coden=MMTAEB&rft_id=info:doi/10.1007/s11661-013-1869-6&rft_dat=%3Cproquest_cross%3E3080568501%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c346t-75d0a271191b38b97bf96713aeccd10f6856c97a046426be7be2782bba5bb2153%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1435823969&rft_id=info:pmid/&rfr_iscdi=true |