Loading…

Influence of Temperature and Strain Rate on Tensile Deformation and Fracture Behavior of P92 Ferritic Steel

Tensile tests were performed at strain rates ranging from 3.16 × 10 −5 to 1.26 × 10 −3  s −1 over a temperature range of 300 K to 923 K (27 °C to 650 °C) to examine the effects of temperature and strain rate on tensile deformation and fracture behavior of P92 ferritic steel. The variations of flow s...

Full description

Saved in:
Bibliographic Details
Published in:Metallurgical and materials transactions. A, Physical metallurgy and materials science Physical metallurgy and materials science, 2013-11, Vol.44 (11), p.4979-4992
Main Authors: Choudhary, B. K., Samuel, E. Isaac, Sainath, G., Christopher, J., Mathew, M. D.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c346t-75d0a271191b38b97bf96713aeccd10f6856c97a046426be7be2782bba5bb2153
cites cdi_FETCH-LOGICAL-c346t-75d0a271191b38b97bf96713aeccd10f6856c97a046426be7be2782bba5bb2153
container_end_page 4992
container_issue 11
container_start_page 4979
container_title Metallurgical and materials transactions. A, Physical metallurgy and materials science
container_volume 44
creator Choudhary, B. K.
Samuel, E. Isaac
Sainath, G.
Christopher, J.
Mathew, M. D.
description Tensile tests were performed at strain rates ranging from 3.16 × 10 −5 to 1.26 × 10 −3  s −1 over a temperature range of 300 K to 923 K (27 °C to 650 °C) to examine the effects of temperature and strain rate on tensile deformation and fracture behavior of P92 ferritic steel. The variations of flow stress/strength values, work hardening rate, and tensile ductility with respect to temperature exhibited distinct three temperature regimes. The fracture mode remained transgranular. The steel exhibited serrated flow, an important manifestation of dynamic strain aging, along with anomalous variations in tensile properties in terms of peaks in flow stress/strength and work hardening rate, negative strain rate sensitivity, and ductility minima at intermediate temperatures. At high temperatures, the rapid decrease in flow stress/strength values and work hardening rate, and increase in ductility with increase in temperature and decrease in strain rate, indicated the dominance of dynamic recovery.
doi_str_mv 10.1007/s11661-013-1869-6
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1435823969</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3080568501</sourcerecordid><originalsourceid>FETCH-LOGICAL-c346t-75d0a271191b38b97bf96713aeccd10f6856c97a046426be7be2782bba5bb2153</originalsourceid><addsrcrecordid>eNp1kM1OwzAQhCMEEqXwANwiIY4Br53Y8REKhUqVQFDOlu1uICV1ip0g8fY4tEJcOPlnZr5dTZKcArkAQsRlAOAcMgIsg5LLjO8lIyjy-JI52Y93IlhWcMoOk6MQVoQQkIyPkveZq5oencW0rdIFrjfoddd7TLVbps-d17VLn3QXZRdlF-oG0xusWr_WXR3_BtvUa_uTucY3_Vm3fmA9SppO0fu6q20EITbHyUGlm4Anu3OcvExvF5P7bP5wN5tczTPLct5lolgSTQWABMNKI4WpJBfANFq7BFLxsuBWCk1ynlNuUBikoqTG6MIYCgUbJ2db7sa3Hz2GTq3a3rs4UkHOipIyyWV0wdZlfRuCx0ptfL3W_ksBUUOnatupip2qoVPFY-Z8R9bB6qby2tk6_AbjGkxwXkYf3fpClNwr-j8b_Av_Bgathao</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1435823969</pqid></control><display><type>article</type><title>Influence of Temperature and Strain Rate on Tensile Deformation and Fracture Behavior of P92 Ferritic Steel</title><source>Springer Link</source><creator>Choudhary, B. K. ; Samuel, E. Isaac ; Sainath, G. ; Christopher, J. ; Mathew, M. D.</creator><creatorcontrib>Choudhary, B. K. ; Samuel, E. Isaac ; Sainath, G. ; Christopher, J. ; Mathew, M. D.</creatorcontrib><description>Tensile tests were performed at strain rates ranging from 3.16 × 10 −5 to 1.26 × 10 −3  s −1 over a temperature range of 300 K to 923 K (27 °C to 650 °C) to examine the effects of temperature and strain rate on tensile deformation and fracture behavior of P92 ferritic steel. The variations of flow stress/strength values, work hardening rate, and tensile ductility with respect to temperature exhibited distinct three temperature regimes. The fracture mode remained transgranular. The steel exhibited serrated flow, an important manifestation of dynamic strain aging, along with anomalous variations in tensile properties in terms of peaks in flow stress/strength and work hardening rate, negative strain rate sensitivity, and ductility minima at intermediate temperatures. At high temperatures, the rapid decrease in flow stress/strength values and work hardening rate, and increase in ductility with increase in temperature and decrease in strain rate, indicated the dominance of dynamic recovery.</description><identifier>ISSN: 1073-5623</identifier><identifier>EISSN: 1543-1940</identifier><identifier>DOI: 10.1007/s11661-013-1869-6</identifier><identifier>CODEN: MMTAEB</identifier><language>eng</language><publisher>Boston: Springer US</publisher><subject>Applied sciences ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Deformation ; Exact sciences and technology ; Ferritic stainless steel ; Fracture mechanics ; Fractures ; Materials Science ; Mechanical properties and methods of testing. Rheology. Fracture mechanics. Tribology ; Metallic Materials ; Metals. Metallurgy ; Nanotechnology ; Strain rate ; Structural Materials ; Surfaces and Interfaces ; Temperature effects ; Tensile strength ; Thin Films</subject><ispartof>Metallurgical and materials transactions. A, Physical metallurgy and materials science, 2013-11, Vol.44 (11), p.4979-4992</ispartof><rights>The Minerals, Metals &amp; Materials Society and ASM International 2013</rights><rights>2014 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c346t-75d0a271191b38b97bf96713aeccd10f6856c97a046426be7be2782bba5bb2153</citedby><cites>FETCH-LOGICAL-c346t-75d0a271191b38b97bf96713aeccd10f6856c97a046426be7be2782bba5bb2153</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=27837668$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Choudhary, B. K.</creatorcontrib><creatorcontrib>Samuel, E. Isaac</creatorcontrib><creatorcontrib>Sainath, G.</creatorcontrib><creatorcontrib>Christopher, J.</creatorcontrib><creatorcontrib>Mathew, M. D.</creatorcontrib><title>Influence of Temperature and Strain Rate on Tensile Deformation and Fracture Behavior of P92 Ferritic Steel</title><title>Metallurgical and materials transactions. A, Physical metallurgy and materials science</title><addtitle>Metall Mater Trans A</addtitle><description>Tensile tests were performed at strain rates ranging from 3.16 × 10 −5 to 1.26 × 10 −3  s −1 over a temperature range of 300 K to 923 K (27 °C to 650 °C) to examine the effects of temperature and strain rate on tensile deformation and fracture behavior of P92 ferritic steel. The variations of flow stress/strength values, work hardening rate, and tensile ductility with respect to temperature exhibited distinct three temperature regimes. The fracture mode remained transgranular. The steel exhibited serrated flow, an important manifestation of dynamic strain aging, along with anomalous variations in tensile properties in terms of peaks in flow stress/strength and work hardening rate, negative strain rate sensitivity, and ductility minima at intermediate temperatures. At high temperatures, the rapid decrease in flow stress/strength values and work hardening rate, and increase in ductility with increase in temperature and decrease in strain rate, indicated the dominance of dynamic recovery.</description><subject>Applied sciences</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Deformation</subject><subject>Exact sciences and technology</subject><subject>Ferritic stainless steel</subject><subject>Fracture mechanics</subject><subject>Fractures</subject><subject>Materials Science</subject><subject>Mechanical properties and methods of testing. Rheology. Fracture mechanics. Tribology</subject><subject>Metallic Materials</subject><subject>Metals. Metallurgy</subject><subject>Nanotechnology</subject><subject>Strain rate</subject><subject>Structural Materials</subject><subject>Surfaces and Interfaces</subject><subject>Temperature effects</subject><subject>Tensile strength</subject><subject>Thin Films</subject><issn>1073-5623</issn><issn>1543-1940</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNp1kM1OwzAQhCMEEqXwANwiIY4Br53Y8REKhUqVQFDOlu1uICV1ip0g8fY4tEJcOPlnZr5dTZKcArkAQsRlAOAcMgIsg5LLjO8lIyjy-JI52Y93IlhWcMoOk6MQVoQQkIyPkveZq5oencW0rdIFrjfoddd7TLVbps-d17VLn3QXZRdlF-oG0xusWr_WXR3_BtvUa_uTucY3_Vm3fmA9SppO0fu6q20EITbHyUGlm4Anu3OcvExvF5P7bP5wN5tczTPLct5lolgSTQWABMNKI4WpJBfANFq7BFLxsuBWCk1ynlNuUBikoqTG6MIYCgUbJ2db7sa3Hz2GTq3a3rs4UkHOipIyyWV0wdZlfRuCx0ptfL3W_ksBUUOnatupip2qoVPFY-Z8R9bB6qby2tk6_AbjGkxwXkYf3fpClNwr-j8b_Av_Bgathao</recordid><startdate>20131101</startdate><enddate>20131101</enddate><creator>Choudhary, B. K.</creator><creator>Samuel, E. Isaac</creator><creator>Sainath, G.</creator><creator>Christopher, J.</creator><creator>Mathew, M. D.</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>4T-</scope><scope>4U-</scope><scope>7SR</scope><scope>7XB</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>L6V</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0X</scope></search><sort><creationdate>20131101</creationdate><title>Influence of Temperature and Strain Rate on Tensile Deformation and Fracture Behavior of P92 Ferritic Steel</title><author>Choudhary, B. K. ; Samuel, E. Isaac ; Sainath, G. ; Christopher, J. ; Mathew, M. D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c346t-75d0a271191b38b97bf96713aeccd10f6856c97a046426be7be2782bba5bb2153</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Applied sciences</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Deformation</topic><topic>Exact sciences and technology</topic><topic>Ferritic stainless steel</topic><topic>Fracture mechanics</topic><topic>Fractures</topic><topic>Materials Science</topic><topic>Mechanical properties and methods of testing. Rheology. Fracture mechanics. Tribology</topic><topic>Metallic Materials</topic><topic>Metals. Metallurgy</topic><topic>Nanotechnology</topic><topic>Strain rate</topic><topic>Structural Materials</topic><topic>Surfaces and Interfaces</topic><topic>Temperature effects</topic><topic>Tensile strength</topic><topic>Thin Films</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Choudhary, B. K.</creatorcontrib><creatorcontrib>Samuel, E. Isaac</creatorcontrib><creatorcontrib>Sainath, G.</creatorcontrib><creatorcontrib>Christopher, J.</creatorcontrib><creatorcontrib>Mathew, M. D.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Docstoc</collection><collection>University Readers</collection><collection>Engineered Materials Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>https://resources.nclive.org/materials</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Research Library</collection><collection>ProQuest Science Journals</collection><collection>ProQuest Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Materials science collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><jtitle>Metallurgical and materials transactions. A, Physical metallurgy and materials science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Choudhary, B. K.</au><au>Samuel, E. Isaac</au><au>Sainath, G.</au><au>Christopher, J.</au><au>Mathew, M. D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Influence of Temperature and Strain Rate on Tensile Deformation and Fracture Behavior of P92 Ferritic Steel</atitle><jtitle>Metallurgical and materials transactions. A, Physical metallurgy and materials science</jtitle><stitle>Metall Mater Trans A</stitle><date>2013-11-01</date><risdate>2013</risdate><volume>44</volume><issue>11</issue><spage>4979</spage><epage>4992</epage><pages>4979-4992</pages><issn>1073-5623</issn><eissn>1543-1940</eissn><coden>MMTAEB</coden><abstract>Tensile tests were performed at strain rates ranging from 3.16 × 10 −5 to 1.26 × 10 −3  s −1 over a temperature range of 300 K to 923 K (27 °C to 650 °C) to examine the effects of temperature and strain rate on tensile deformation and fracture behavior of P92 ferritic steel. The variations of flow stress/strength values, work hardening rate, and tensile ductility with respect to temperature exhibited distinct three temperature regimes. The fracture mode remained transgranular. The steel exhibited serrated flow, an important manifestation of dynamic strain aging, along with anomalous variations in tensile properties in terms of peaks in flow stress/strength and work hardening rate, negative strain rate sensitivity, and ductility minima at intermediate temperatures. At high temperatures, the rapid decrease in flow stress/strength values and work hardening rate, and increase in ductility with increase in temperature and decrease in strain rate, indicated the dominance of dynamic recovery.</abstract><cop>Boston</cop><pub>Springer US</pub><doi>10.1007/s11661-013-1869-6</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1073-5623
ispartof Metallurgical and materials transactions. A, Physical metallurgy and materials science, 2013-11, Vol.44 (11), p.4979-4992
issn 1073-5623
1543-1940
language eng
recordid cdi_proquest_journals_1435823969
source Springer Link
subjects Applied sciences
Characterization and Evaluation of Materials
Chemistry and Materials Science
Deformation
Exact sciences and technology
Ferritic stainless steel
Fracture mechanics
Fractures
Materials Science
Mechanical properties and methods of testing. Rheology. Fracture mechanics. Tribology
Metallic Materials
Metals. Metallurgy
Nanotechnology
Strain rate
Structural Materials
Surfaces and Interfaces
Temperature effects
Tensile strength
Thin Films
title Influence of Temperature and Strain Rate on Tensile Deformation and Fracture Behavior of P92 Ferritic Steel
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T23%3A05%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Influence%20of%20Temperature%20and%20Strain%20Rate%20on%20Tensile%20Deformation%20and%20Fracture%20Behavior%20of%20P92%20Ferritic%20Steel&rft.jtitle=Metallurgical%20and%20materials%20transactions.%20A,%20Physical%20metallurgy%20and%20materials%20science&rft.au=Choudhary,%20B.%20K.&rft.date=2013-11-01&rft.volume=44&rft.issue=11&rft.spage=4979&rft.epage=4992&rft.pages=4979-4992&rft.issn=1073-5623&rft.eissn=1543-1940&rft.coden=MMTAEB&rft_id=info:doi/10.1007/s11661-013-1869-6&rft_dat=%3Cproquest_cross%3E3080568501%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c346t-75d0a271191b38b97bf96713aeccd10f6856c97a046426be7be2782bba5bb2153%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1435823969&rft_id=info:pmid/&rfr_iscdi=true