Loading…
Orthogonal Multicarrier Division Multiple Access for Multipoint-to-Multipoint Networks
We develop new transmission schemes for multipoint-to-multipoint (M2M) networks which, unlike the existing approaches, address duplexing/multiplexing and multiple access jointly and possess true M2M characteristics in the physical layer. In the proposed schemes, all forward and reverse links of the...
Saved in:
Published in: | IEEE transactions on communications 2013-09, Vol.61 (9), p.3841-3853 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c436t-36c708050464296bc30cc26ba72607865ef1b8cd37aa3bfbf15b20a8215a46213 |
---|---|
cites | cdi_FETCH-LOGICAL-c436t-36c708050464296bc30cc26ba72607865ef1b8cd37aa3bfbf15b20a8215a46213 |
container_end_page | 3853 |
container_issue | 9 |
container_start_page | 3841 |
container_title | IEEE transactions on communications |
container_volume | 61 |
creator | Wenxun Qiu Tarasak, Poramate Hlaing Minn |
description | We develop new transmission schemes for multipoint-to-multipoint (M2M) networks which, unlike the existing approaches, address duplexing/multiplexing and multiple access jointly and possess true M2M characteristics in the physical layer. In the proposed schemes, all forward and reverse links of the M2M network share the overall spectrum concurrently in an orthogonal frequency division manner. This provides increased degrees of freedom and enhanced diversity in scheduling and resource allocation, thus leading to performance enhancement. We first discuss practical implementation issues. Next, we develop our proposed schemes for both centralized and distributed access scenarios. Under the centralized access, we illustrate advantages of the proposed approach for M2M networks using a scheduling algorithm and provide a closed-form analytical throughput upper-bound. Next, we extend the proposed approach to multicasting and present a new scheduling strategy and its closed-form analytical approximate throughput expression. Under the distributed access, we develop a generalized multi-channel carrier sensing multiple access/collision avoidance scheme for M2M networks and propose a new scheme which exploits local channel information. Closed-form analytical throughput expressions for a specific scenario are also presented. Simulation results corroborate substantial performance gains of the proposed schemes over the conventional schemes in both centralized and random access scenarios. |
doi_str_mv | 10.1109/TCOMM.2013.071813.120704 |
format | article |
fullrecord | <record><control><sourceid>proquest_pasca</sourceid><recordid>TN_cdi_proquest_journals_1437304380</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6567879</ieee_id><sourcerecordid>1448777276</sourcerecordid><originalsourceid>FETCH-LOGICAL-c436t-36c708050464296bc30cc26ba72607865ef1b8cd37aa3bfbf15b20a8215a46213</originalsourceid><addsrcrecordid>eNpdkEtPwzAMgCMEEmPwC7hUQkhcOpx3dpzGU9rYZXCN0pBCRteMpAXx7-noBBIny_ZnW_4QyjCMMIbx5XK6mM9HBDAdgcSqC5iABLaHBphzlYPich8NAMaQCynVITpKaQUADCgdoKdFbF7DS6hNlc3bqvHWxOhdzK78h08-1H11U7lsYq1LKStD3NWCr5u8Cflflj245jPEt3SMDkpTJXeyi0P0eHO9nN7ls8Xt_XQyyy2josmpsBIUcGCCkbEoLAVriSiMJAKkEtyVuFD2mUpjaFEWJeYFAaMI5oYJgukQXfR7NzG8ty41eu2TdVVlahfapDFjSkpJpOjQs3_oKrSx-3tLUUmBUQUdpXrKxpBSdKXeRL828Utj0Fvh-ke43grXvXDdC-9Gz3cHTLKmKqOprU-_86STTxVTHXfac94599sWXEglx_Qb_5CJuA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1437304380</pqid></control><display><type>article</type><title>Orthogonal Multicarrier Division Multiple Access for Multipoint-to-Multipoint Networks</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Wenxun Qiu ; Tarasak, Poramate ; Hlaing Minn</creator><creatorcontrib>Wenxun Qiu ; Tarasak, Poramate ; Hlaing Minn</creatorcontrib><description>We develop new transmission schemes for multipoint-to-multipoint (M2M) networks which, unlike the existing approaches, address duplexing/multiplexing and multiple access jointly and possess true M2M characteristics in the physical layer. In the proposed schemes, all forward and reverse links of the M2M network share the overall spectrum concurrently in an orthogonal frequency division manner. This provides increased degrees of freedom and enhanced diversity in scheduling and resource allocation, thus leading to performance enhancement. We first discuss practical implementation issues. Next, we develop our proposed schemes for both centralized and distributed access scenarios. Under the centralized access, we illustrate advantages of the proposed approach for M2M networks using a scheduling algorithm and provide a closed-form analytical throughput upper-bound. Next, we extend the proposed approach to multicasting and present a new scheduling strategy and its closed-form analytical approximate throughput expression. Under the distributed access, we develop a generalized multi-channel carrier sensing multiple access/collision avoidance scheme for M2M networks and propose a new scheme which exploits local channel information. Closed-form analytical throughput expressions for a specific scenario are also presented. Simulation results corroborate substantial performance gains of the proposed schemes over the conventional schemes in both centralized and random access scenarios.</description><identifier>ISSN: 0090-6778</identifier><identifier>EISSN: 1558-0857</identifier><identifier>DOI: 10.1109/TCOMM.2013.071813.120704</identifier><identifier>CODEN: IECMBT</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Access methods and protocols, osi model ; Algorithms ; Applied sciences ; Channels ; Complexity theory ; Exact sciences and technology ; Exact solutions ; Frequency division multiplexing ; Information, signal and communications theory ; Mathematical analysis ; Multiaccess communication ; multicast ; Multicasting ; multichannel CSMA/CA ; Multiple access ; Multiplexing ; Multipoint-to-multipoint ; Networks ; OFDM ; Optimal scheduling ; Scheduling ; Signal and communications theory ; Studies ; Systems, networks and services of telecommunications ; Telecommunications ; Telecommunications and information theory ; Teleprocessing networks. Isdn ; Throughput ; Transmission and modulation (techniques and equipments)</subject><ispartof>IEEE transactions on communications, 2013-09, Vol.61 (9), p.3841-3853</ispartof><rights>2014 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Sep 2013</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c436t-36c708050464296bc30cc26ba72607865ef1b8cd37aa3bfbf15b20a8215a46213</citedby><cites>FETCH-LOGICAL-c436t-36c708050464296bc30cc26ba72607865ef1b8cd37aa3bfbf15b20a8215a46213</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6567879$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27783848$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Wenxun Qiu</creatorcontrib><creatorcontrib>Tarasak, Poramate</creatorcontrib><creatorcontrib>Hlaing Minn</creatorcontrib><title>Orthogonal Multicarrier Division Multiple Access for Multipoint-to-Multipoint Networks</title><title>IEEE transactions on communications</title><addtitle>TCOMM</addtitle><description>We develop new transmission schemes for multipoint-to-multipoint (M2M) networks which, unlike the existing approaches, address duplexing/multiplexing and multiple access jointly and possess true M2M characteristics in the physical layer. In the proposed schemes, all forward and reverse links of the M2M network share the overall spectrum concurrently in an orthogonal frequency division manner. This provides increased degrees of freedom and enhanced diversity in scheduling and resource allocation, thus leading to performance enhancement. We first discuss practical implementation issues. Next, we develop our proposed schemes for both centralized and distributed access scenarios. Under the centralized access, we illustrate advantages of the proposed approach for M2M networks using a scheduling algorithm and provide a closed-form analytical throughput upper-bound. Next, we extend the proposed approach to multicasting and present a new scheduling strategy and its closed-form analytical approximate throughput expression. Under the distributed access, we develop a generalized multi-channel carrier sensing multiple access/collision avoidance scheme for M2M networks and propose a new scheme which exploits local channel information. Closed-form analytical throughput expressions for a specific scenario are also presented. Simulation results corroborate substantial performance gains of the proposed schemes over the conventional schemes in both centralized and random access scenarios.</description><subject>Access methods and protocols, osi model</subject><subject>Algorithms</subject><subject>Applied sciences</subject><subject>Channels</subject><subject>Complexity theory</subject><subject>Exact sciences and technology</subject><subject>Exact solutions</subject><subject>Frequency division multiplexing</subject><subject>Information, signal and communications theory</subject><subject>Mathematical analysis</subject><subject>Multiaccess communication</subject><subject>multicast</subject><subject>Multicasting</subject><subject>multichannel CSMA/CA</subject><subject>Multiple access</subject><subject>Multiplexing</subject><subject>Multipoint-to-multipoint</subject><subject>Networks</subject><subject>OFDM</subject><subject>Optimal scheduling</subject><subject>Scheduling</subject><subject>Signal and communications theory</subject><subject>Studies</subject><subject>Systems, networks and services of telecommunications</subject><subject>Telecommunications</subject><subject>Telecommunications and information theory</subject><subject>Teleprocessing networks. Isdn</subject><subject>Throughput</subject><subject>Transmission and modulation (techniques and equipments)</subject><issn>0090-6778</issn><issn>1558-0857</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNpdkEtPwzAMgCMEEmPwC7hUQkhcOpx3dpzGU9rYZXCN0pBCRteMpAXx7-noBBIny_ZnW_4QyjCMMIbx5XK6mM9HBDAdgcSqC5iABLaHBphzlYPich8NAMaQCynVITpKaQUADCgdoKdFbF7DS6hNlc3bqvHWxOhdzK78h08-1H11U7lsYq1LKStD3NWCr5u8Cflflj245jPEt3SMDkpTJXeyi0P0eHO9nN7ls8Xt_XQyyy2josmpsBIUcGCCkbEoLAVriSiMJAKkEtyVuFD2mUpjaFEWJeYFAaMI5oYJgukQXfR7NzG8ty41eu2TdVVlahfapDFjSkpJpOjQs3_oKrSx-3tLUUmBUQUdpXrKxpBSdKXeRL828Utj0Fvh-ke43grXvXDdC-9Gz3cHTLKmKqOprU-_86STTxVTHXfac94599sWXEglx_Qb_5CJuA</recordid><startdate>20130901</startdate><enddate>20130901</enddate><creator>Wenxun Qiu</creator><creator>Tarasak, Poramate</creator><creator>Hlaing Minn</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20130901</creationdate><title>Orthogonal Multicarrier Division Multiple Access for Multipoint-to-Multipoint Networks</title><author>Wenxun Qiu ; Tarasak, Poramate ; Hlaing Minn</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c436t-36c708050464296bc30cc26ba72607865ef1b8cd37aa3bfbf15b20a8215a46213</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Access methods and protocols, osi model</topic><topic>Algorithms</topic><topic>Applied sciences</topic><topic>Channels</topic><topic>Complexity theory</topic><topic>Exact sciences and technology</topic><topic>Exact solutions</topic><topic>Frequency division multiplexing</topic><topic>Information, signal and communications theory</topic><topic>Mathematical analysis</topic><topic>Multiaccess communication</topic><topic>multicast</topic><topic>Multicasting</topic><topic>multichannel CSMA/CA</topic><topic>Multiple access</topic><topic>Multiplexing</topic><topic>Multipoint-to-multipoint</topic><topic>Networks</topic><topic>OFDM</topic><topic>Optimal scheduling</topic><topic>Scheduling</topic><topic>Signal and communications theory</topic><topic>Studies</topic><topic>Systems, networks and services of telecommunications</topic><topic>Telecommunications</topic><topic>Telecommunications and information theory</topic><topic>Teleprocessing networks. Isdn</topic><topic>Throughput</topic><topic>Transmission and modulation (techniques and equipments)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wenxun Qiu</creatorcontrib><creatorcontrib>Tarasak, Poramate</creatorcontrib><creatorcontrib>Hlaing Minn</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore / Electronic Library Online (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wenxun Qiu</au><au>Tarasak, Poramate</au><au>Hlaing Minn</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Orthogonal Multicarrier Division Multiple Access for Multipoint-to-Multipoint Networks</atitle><jtitle>IEEE transactions on communications</jtitle><stitle>TCOMM</stitle><date>2013-09-01</date><risdate>2013</risdate><volume>61</volume><issue>9</issue><spage>3841</spage><epage>3853</epage><pages>3841-3853</pages><issn>0090-6778</issn><eissn>1558-0857</eissn><coden>IECMBT</coden><abstract>We develop new transmission schemes for multipoint-to-multipoint (M2M) networks which, unlike the existing approaches, address duplexing/multiplexing and multiple access jointly and possess true M2M characteristics in the physical layer. In the proposed schemes, all forward and reverse links of the M2M network share the overall spectrum concurrently in an orthogonal frequency division manner. This provides increased degrees of freedom and enhanced diversity in scheduling and resource allocation, thus leading to performance enhancement. We first discuss practical implementation issues. Next, we develop our proposed schemes for both centralized and distributed access scenarios. Under the centralized access, we illustrate advantages of the proposed approach for M2M networks using a scheduling algorithm and provide a closed-form analytical throughput upper-bound. Next, we extend the proposed approach to multicasting and present a new scheduling strategy and its closed-form analytical approximate throughput expression. Under the distributed access, we develop a generalized multi-channel carrier sensing multiple access/collision avoidance scheme for M2M networks and propose a new scheme which exploits local channel information. Closed-form analytical throughput expressions for a specific scenario are also presented. Simulation results corroborate substantial performance gains of the proposed schemes over the conventional schemes in both centralized and random access scenarios.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TCOMM.2013.071813.120704</doi><tpages>13</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0090-6778 |
ispartof | IEEE transactions on communications, 2013-09, Vol.61 (9), p.3841-3853 |
issn | 0090-6778 1558-0857 |
language | eng |
recordid | cdi_proquest_journals_1437304380 |
source | IEEE Electronic Library (IEL) Journals |
subjects | Access methods and protocols, osi model Algorithms Applied sciences Channels Complexity theory Exact sciences and technology Exact solutions Frequency division multiplexing Information, signal and communications theory Mathematical analysis Multiaccess communication multicast Multicasting multichannel CSMA/CA Multiple access Multiplexing Multipoint-to-multipoint Networks OFDM Optimal scheduling Scheduling Signal and communications theory Studies Systems, networks and services of telecommunications Telecommunications Telecommunications and information theory Teleprocessing networks. Isdn Throughput Transmission and modulation (techniques and equipments) |
title | Orthogonal Multicarrier Division Multiple Access for Multipoint-to-Multipoint Networks |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T13%3A56%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Orthogonal%20Multicarrier%20Division%20Multiple%20Access%20for%20Multipoint-to-Multipoint%20Networks&rft.jtitle=IEEE%20transactions%20on%20communications&rft.au=Wenxun%20Qiu&rft.date=2013-09-01&rft.volume=61&rft.issue=9&rft.spage=3841&rft.epage=3853&rft.pages=3841-3853&rft.issn=0090-6778&rft.eissn=1558-0857&rft.coden=IECMBT&rft_id=info:doi/10.1109/TCOMM.2013.071813.120704&rft_dat=%3Cproquest_pasca%3E1448777276%3C/proquest_pasca%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c436t-36c708050464296bc30cc26ba72607865ef1b8cd37aa3bfbf15b20a8215a46213%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1437304380&rft_id=info:pmid/&rft_ieee_id=6567879&rfr_iscdi=true |