Loading…

Orthogonal Multicarrier Division Multiple Access for Multipoint-to-Multipoint Networks

We develop new transmission schemes for multipoint-to-multipoint (M2M) networks which, unlike the existing approaches, address duplexing/multiplexing and multiple access jointly and possess true M2M characteristics in the physical layer. In the proposed schemes, all forward and reverse links of the...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on communications 2013-09, Vol.61 (9), p.3841-3853
Main Authors: Wenxun Qiu, Tarasak, Poramate, Hlaing Minn
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c436t-36c708050464296bc30cc26ba72607865ef1b8cd37aa3bfbf15b20a8215a46213
cites cdi_FETCH-LOGICAL-c436t-36c708050464296bc30cc26ba72607865ef1b8cd37aa3bfbf15b20a8215a46213
container_end_page 3853
container_issue 9
container_start_page 3841
container_title IEEE transactions on communications
container_volume 61
creator Wenxun Qiu
Tarasak, Poramate
Hlaing Minn
description We develop new transmission schemes for multipoint-to-multipoint (M2M) networks which, unlike the existing approaches, address duplexing/multiplexing and multiple access jointly and possess true M2M characteristics in the physical layer. In the proposed schemes, all forward and reverse links of the M2M network share the overall spectrum concurrently in an orthogonal frequency division manner. This provides increased degrees of freedom and enhanced diversity in scheduling and resource allocation, thus leading to performance enhancement. We first discuss practical implementation issues. Next, we develop our proposed schemes for both centralized and distributed access scenarios. Under the centralized access, we illustrate advantages of the proposed approach for M2M networks using a scheduling algorithm and provide a closed-form analytical throughput upper-bound. Next, we extend the proposed approach to multicasting and present a new scheduling strategy and its closed-form analytical approximate throughput expression. Under the distributed access, we develop a generalized multi-channel carrier sensing multiple access/collision avoidance scheme for M2M networks and propose a new scheme which exploits local channel information. Closed-form analytical throughput expressions for a specific scenario are also presented. Simulation results corroborate substantial performance gains of the proposed schemes over the conventional schemes in both centralized and random access scenarios.
doi_str_mv 10.1109/TCOMM.2013.071813.120704
format article
fullrecord <record><control><sourceid>proquest_pasca</sourceid><recordid>TN_cdi_proquest_journals_1437304380</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6567879</ieee_id><sourcerecordid>1448777276</sourcerecordid><originalsourceid>FETCH-LOGICAL-c436t-36c708050464296bc30cc26ba72607865ef1b8cd37aa3bfbf15b20a8215a46213</originalsourceid><addsrcrecordid>eNpdkEtPwzAMgCMEEmPwC7hUQkhcOpx3dpzGU9rYZXCN0pBCRteMpAXx7-noBBIny_ZnW_4QyjCMMIbx5XK6mM9HBDAdgcSqC5iABLaHBphzlYPich8NAMaQCynVITpKaQUADCgdoKdFbF7DS6hNlc3bqvHWxOhdzK78h08-1H11U7lsYq1LKStD3NWCr5u8Cflflj245jPEt3SMDkpTJXeyi0P0eHO9nN7ls8Xt_XQyyy2josmpsBIUcGCCkbEoLAVriSiMJAKkEtyVuFD2mUpjaFEWJeYFAaMI5oYJgukQXfR7NzG8ty41eu2TdVVlahfapDFjSkpJpOjQs3_oKrSx-3tLUUmBUQUdpXrKxpBSdKXeRL828Utj0Fvh-ke43grXvXDdC-9Gz3cHTLKmKqOprU-_86STTxVTHXfac94599sWXEglx_Qb_5CJuA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1437304380</pqid></control><display><type>article</type><title>Orthogonal Multicarrier Division Multiple Access for Multipoint-to-Multipoint Networks</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Wenxun Qiu ; Tarasak, Poramate ; Hlaing Minn</creator><creatorcontrib>Wenxun Qiu ; Tarasak, Poramate ; Hlaing Minn</creatorcontrib><description>We develop new transmission schemes for multipoint-to-multipoint (M2M) networks which, unlike the existing approaches, address duplexing/multiplexing and multiple access jointly and possess true M2M characteristics in the physical layer. In the proposed schemes, all forward and reverse links of the M2M network share the overall spectrum concurrently in an orthogonal frequency division manner. This provides increased degrees of freedom and enhanced diversity in scheduling and resource allocation, thus leading to performance enhancement. We first discuss practical implementation issues. Next, we develop our proposed schemes for both centralized and distributed access scenarios. Under the centralized access, we illustrate advantages of the proposed approach for M2M networks using a scheduling algorithm and provide a closed-form analytical throughput upper-bound. Next, we extend the proposed approach to multicasting and present a new scheduling strategy and its closed-form analytical approximate throughput expression. Under the distributed access, we develop a generalized multi-channel carrier sensing multiple access/collision avoidance scheme for M2M networks and propose a new scheme which exploits local channel information. Closed-form analytical throughput expressions for a specific scenario are also presented. Simulation results corroborate substantial performance gains of the proposed schemes over the conventional schemes in both centralized and random access scenarios.</description><identifier>ISSN: 0090-6778</identifier><identifier>EISSN: 1558-0857</identifier><identifier>DOI: 10.1109/TCOMM.2013.071813.120704</identifier><identifier>CODEN: IECMBT</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Access methods and protocols, osi model ; Algorithms ; Applied sciences ; Channels ; Complexity theory ; Exact sciences and technology ; Exact solutions ; Frequency division multiplexing ; Information, signal and communications theory ; Mathematical analysis ; Multiaccess communication ; multicast ; Multicasting ; multichannel CSMA/CA ; Multiple access ; Multiplexing ; Multipoint-to-multipoint ; Networks ; OFDM ; Optimal scheduling ; Scheduling ; Signal and communications theory ; Studies ; Systems, networks and services of telecommunications ; Telecommunications ; Telecommunications and information theory ; Teleprocessing networks. Isdn ; Throughput ; Transmission and modulation (techniques and equipments)</subject><ispartof>IEEE transactions on communications, 2013-09, Vol.61 (9), p.3841-3853</ispartof><rights>2014 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Sep 2013</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c436t-36c708050464296bc30cc26ba72607865ef1b8cd37aa3bfbf15b20a8215a46213</citedby><cites>FETCH-LOGICAL-c436t-36c708050464296bc30cc26ba72607865ef1b8cd37aa3bfbf15b20a8215a46213</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6567879$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=27783848$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Wenxun Qiu</creatorcontrib><creatorcontrib>Tarasak, Poramate</creatorcontrib><creatorcontrib>Hlaing Minn</creatorcontrib><title>Orthogonal Multicarrier Division Multiple Access for Multipoint-to-Multipoint Networks</title><title>IEEE transactions on communications</title><addtitle>TCOMM</addtitle><description>We develop new transmission schemes for multipoint-to-multipoint (M2M) networks which, unlike the existing approaches, address duplexing/multiplexing and multiple access jointly and possess true M2M characteristics in the physical layer. In the proposed schemes, all forward and reverse links of the M2M network share the overall spectrum concurrently in an orthogonal frequency division manner. This provides increased degrees of freedom and enhanced diversity in scheduling and resource allocation, thus leading to performance enhancement. We first discuss practical implementation issues. Next, we develop our proposed schemes for both centralized and distributed access scenarios. Under the centralized access, we illustrate advantages of the proposed approach for M2M networks using a scheduling algorithm and provide a closed-form analytical throughput upper-bound. Next, we extend the proposed approach to multicasting and present a new scheduling strategy and its closed-form analytical approximate throughput expression. Under the distributed access, we develop a generalized multi-channel carrier sensing multiple access/collision avoidance scheme for M2M networks and propose a new scheme which exploits local channel information. Closed-form analytical throughput expressions for a specific scenario are also presented. Simulation results corroborate substantial performance gains of the proposed schemes over the conventional schemes in both centralized and random access scenarios.</description><subject>Access methods and protocols, osi model</subject><subject>Algorithms</subject><subject>Applied sciences</subject><subject>Channels</subject><subject>Complexity theory</subject><subject>Exact sciences and technology</subject><subject>Exact solutions</subject><subject>Frequency division multiplexing</subject><subject>Information, signal and communications theory</subject><subject>Mathematical analysis</subject><subject>Multiaccess communication</subject><subject>multicast</subject><subject>Multicasting</subject><subject>multichannel CSMA/CA</subject><subject>Multiple access</subject><subject>Multiplexing</subject><subject>Multipoint-to-multipoint</subject><subject>Networks</subject><subject>OFDM</subject><subject>Optimal scheduling</subject><subject>Scheduling</subject><subject>Signal and communications theory</subject><subject>Studies</subject><subject>Systems, networks and services of telecommunications</subject><subject>Telecommunications</subject><subject>Telecommunications and information theory</subject><subject>Teleprocessing networks. Isdn</subject><subject>Throughput</subject><subject>Transmission and modulation (techniques and equipments)</subject><issn>0090-6778</issn><issn>1558-0857</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNpdkEtPwzAMgCMEEmPwC7hUQkhcOpx3dpzGU9rYZXCN0pBCRteMpAXx7-noBBIny_ZnW_4QyjCMMIbx5XK6mM9HBDAdgcSqC5iABLaHBphzlYPich8NAMaQCynVITpKaQUADCgdoKdFbF7DS6hNlc3bqvHWxOhdzK78h08-1H11U7lsYq1LKStD3NWCr5u8Cflflj245jPEt3SMDkpTJXeyi0P0eHO9nN7ls8Xt_XQyyy2josmpsBIUcGCCkbEoLAVriSiMJAKkEtyVuFD2mUpjaFEWJeYFAaMI5oYJgukQXfR7NzG8ty41eu2TdVVlahfapDFjSkpJpOjQs3_oKrSx-3tLUUmBUQUdpXrKxpBSdKXeRL828Utj0Fvh-ke43grXvXDdC-9Gz3cHTLKmKqOprU-_86STTxVTHXfac94599sWXEglx_Qb_5CJuA</recordid><startdate>20130901</startdate><enddate>20130901</enddate><creator>Wenxun Qiu</creator><creator>Tarasak, Poramate</creator><creator>Hlaing Minn</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20130901</creationdate><title>Orthogonal Multicarrier Division Multiple Access for Multipoint-to-Multipoint Networks</title><author>Wenxun Qiu ; Tarasak, Poramate ; Hlaing Minn</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c436t-36c708050464296bc30cc26ba72607865ef1b8cd37aa3bfbf15b20a8215a46213</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Access methods and protocols, osi model</topic><topic>Algorithms</topic><topic>Applied sciences</topic><topic>Channels</topic><topic>Complexity theory</topic><topic>Exact sciences and technology</topic><topic>Exact solutions</topic><topic>Frequency division multiplexing</topic><topic>Information, signal and communications theory</topic><topic>Mathematical analysis</topic><topic>Multiaccess communication</topic><topic>multicast</topic><topic>Multicasting</topic><topic>multichannel CSMA/CA</topic><topic>Multiple access</topic><topic>Multiplexing</topic><topic>Multipoint-to-multipoint</topic><topic>Networks</topic><topic>OFDM</topic><topic>Optimal scheduling</topic><topic>Scheduling</topic><topic>Signal and communications theory</topic><topic>Studies</topic><topic>Systems, networks and services of telecommunications</topic><topic>Telecommunications</topic><topic>Telecommunications and information theory</topic><topic>Teleprocessing networks. Isdn</topic><topic>Throughput</topic><topic>Transmission and modulation (techniques and equipments)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wenxun Qiu</creatorcontrib><creatorcontrib>Tarasak, Poramate</creatorcontrib><creatorcontrib>Hlaing Minn</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore / Electronic Library Online (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wenxun Qiu</au><au>Tarasak, Poramate</au><au>Hlaing Minn</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Orthogonal Multicarrier Division Multiple Access for Multipoint-to-Multipoint Networks</atitle><jtitle>IEEE transactions on communications</jtitle><stitle>TCOMM</stitle><date>2013-09-01</date><risdate>2013</risdate><volume>61</volume><issue>9</issue><spage>3841</spage><epage>3853</epage><pages>3841-3853</pages><issn>0090-6778</issn><eissn>1558-0857</eissn><coden>IECMBT</coden><abstract>We develop new transmission schemes for multipoint-to-multipoint (M2M) networks which, unlike the existing approaches, address duplexing/multiplexing and multiple access jointly and possess true M2M characteristics in the physical layer. In the proposed schemes, all forward and reverse links of the M2M network share the overall spectrum concurrently in an orthogonal frequency division manner. This provides increased degrees of freedom and enhanced diversity in scheduling and resource allocation, thus leading to performance enhancement. We first discuss practical implementation issues. Next, we develop our proposed schemes for both centralized and distributed access scenarios. Under the centralized access, we illustrate advantages of the proposed approach for M2M networks using a scheduling algorithm and provide a closed-form analytical throughput upper-bound. Next, we extend the proposed approach to multicasting and present a new scheduling strategy and its closed-form analytical approximate throughput expression. Under the distributed access, we develop a generalized multi-channel carrier sensing multiple access/collision avoidance scheme for M2M networks and propose a new scheme which exploits local channel information. Closed-form analytical throughput expressions for a specific scenario are also presented. Simulation results corroborate substantial performance gains of the proposed schemes over the conventional schemes in both centralized and random access scenarios.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TCOMM.2013.071813.120704</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0090-6778
ispartof IEEE transactions on communications, 2013-09, Vol.61 (9), p.3841-3853
issn 0090-6778
1558-0857
language eng
recordid cdi_proquest_journals_1437304380
source IEEE Electronic Library (IEL) Journals
subjects Access methods and protocols, osi model
Algorithms
Applied sciences
Channels
Complexity theory
Exact sciences and technology
Exact solutions
Frequency division multiplexing
Information, signal and communications theory
Mathematical analysis
Multiaccess communication
multicast
Multicasting
multichannel CSMA/CA
Multiple access
Multiplexing
Multipoint-to-multipoint
Networks
OFDM
Optimal scheduling
Scheduling
Signal and communications theory
Studies
Systems, networks and services of telecommunications
Telecommunications
Telecommunications and information theory
Teleprocessing networks. Isdn
Throughput
Transmission and modulation (techniques and equipments)
title Orthogonal Multicarrier Division Multiple Access for Multipoint-to-Multipoint Networks
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T13%3A56%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Orthogonal%20Multicarrier%20Division%20Multiple%20Access%20for%20Multipoint-to-Multipoint%20Networks&rft.jtitle=IEEE%20transactions%20on%20communications&rft.au=Wenxun%20Qiu&rft.date=2013-09-01&rft.volume=61&rft.issue=9&rft.spage=3841&rft.epage=3853&rft.pages=3841-3853&rft.issn=0090-6778&rft.eissn=1558-0857&rft.coden=IECMBT&rft_id=info:doi/10.1109/TCOMM.2013.071813.120704&rft_dat=%3Cproquest_pasca%3E1448777276%3C/proquest_pasca%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c436t-36c708050464296bc30cc26ba72607865ef1b8cd37aa3bfbf15b20a8215a46213%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1437304380&rft_id=info:pmid/&rft_ieee_id=6567879&rfr_iscdi=true