Loading…

A lattice model for option pricing under GARCH-jump processes

This study extends the GARCH pricing tree in Ritchken and Trevor (J Financ 54:366–402, 1999 ) by incorporating an additional jump process to develop a lattice model to value options. The GARCH-jump model can capture the behavior of asset prices more appropriately given its consistency with abundant...

Full description

Saved in:
Bibliographic Details
Published in:Review of derivatives research 2013-10, Vol.16 (3), p.295-329
Main Authors: Lin, Bing-Huei, Hung, Mao-Wei, Wang, Jr-Yan, Wu, Ping-Da
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c380t-908105fcf704d1f1cb1645a64fc4893f3165afe3e2071417b819109bcb19e2ea3
cites cdi_FETCH-LOGICAL-c380t-908105fcf704d1f1cb1645a64fc4893f3165afe3e2071417b819109bcb19e2ea3
container_end_page 329
container_issue 3
container_start_page 295
container_title Review of derivatives research
container_volume 16
creator Lin, Bing-Huei
Hung, Mao-Wei
Wang, Jr-Yan
Wu, Ping-Da
description This study extends the GARCH pricing tree in Ritchken and Trevor (J Financ 54:366–402, 1999 ) by incorporating an additional jump process to develop a lattice model to value options. The GARCH-jump model can capture the behavior of asset prices more appropriately given its consistency with abundant empirical findings that discontinuities in the sample path of financial asset prices still being found even allowing for autoregressive conditional heteroskedasticity. With our lattice model, it shows that both the GARCH and jump effects in the GARCH-jump model are negative for near-the-money options, while positive for in-the-money and out-of-the-money options. In addition, even when the GARCH model is considered, the jump process impedes the early exercise and thus reduces the percentage of the early exercise premium of American options, particularly for shorter-term horizons. Moreover, the interaction between the GARCH and jump processes can raise the percentage proportions of the early exercise premiums for shorter-term horizons, whereas this effect weakens when the time to maturity increases.
doi_str_mv 10.1007/s11147-012-9087-8
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1437437776</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3084440561</sourcerecordid><originalsourceid>FETCH-LOGICAL-c380t-908105fcf704d1f1cb1645a64fc4893f3165afe3e2071417b819109bcb19e2ea3</originalsourceid><addsrcrecordid>eNp1kEFLxDAQhYMouK7-AG8Bz9FMkzbtwcOy6CosCKLn0KaTpWW3WZP24L93lnrwIgQSmO_Ne3mM3YK8BynNQwIAbYSETFSyNKI8YwvIjRIGtD6ntyqlKAqdX7KrlHopSZWrBXtc8X09jp1Dfggt7rkPkYfj2IWBH2PnumHHp6HFyDer9_WL6KfDkQbBYUqYrtmFr_cJb37vJft8fvogbPu2eV2vtsKR7XhKBDL3zhupW_DgGqAkdaG902WlvIIirz0qzCTFBdOUUIGsGuIqzLBWS3Y37yXnrwnTaPswxYEsLWhl6BhTEAUz5WJIKaK39INDHb8tSHtqyc4tWWrJnlqyJWmyWZOIHXYY_2z-V_QDFKloLQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1437437776</pqid></control><display><type>article</type><title>A lattice model for option pricing under GARCH-jump processes</title><source>ABI/INFORM Global</source><source>Springer Nature</source><creator>Lin, Bing-Huei ; Hung, Mao-Wei ; Wang, Jr-Yan ; Wu, Ping-Da</creator><creatorcontrib>Lin, Bing-Huei ; Hung, Mao-Wei ; Wang, Jr-Yan ; Wu, Ping-Da</creatorcontrib><description>This study extends the GARCH pricing tree in Ritchken and Trevor (J Financ 54:366–402, 1999 ) by incorporating an additional jump process to develop a lattice model to value options. The GARCH-jump model can capture the behavior of asset prices more appropriately given its consistency with abundant empirical findings that discontinuities in the sample path of financial asset prices still being found even allowing for autoregressive conditional heteroskedasticity. With our lattice model, it shows that both the GARCH and jump effects in the GARCH-jump model are negative for near-the-money options, while positive for in-the-money and out-of-the-money options. In addition, even when the GARCH model is considered, the jump process impedes the early exercise and thus reduces the percentage of the early exercise premium of American options, particularly for shorter-term horizons. Moreover, the interaction between the GARCH and jump processes can raise the percentage proportions of the early exercise premiums for shorter-term horizons, whereas this effect weakens when the time to maturity increases.</description><identifier>ISSN: 1380-6645</identifier><identifier>EISSN: 1573-7144</identifier><identifier>DOI: 10.1007/s11147-012-9087-8</identifier><language>eng</language><publisher>Boston: Springer US</publisher><subject>Derivatives ; Economic statistics ; Economic theory ; Economics and Finance ; Finance ; Investments and Securities ; Options markets ; Options trading ; Securities prices ; Skewness ; Stochastic models ; Stock exchanges ; Studies</subject><ispartof>Review of derivatives research, 2013-10, Vol.16 (3), p.295-329</ispartof><rights>Springer Science+Business Media New York 2013</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c380t-908105fcf704d1f1cb1645a64fc4893f3165afe3e2071417b819109bcb19e2ea3</citedby><cites>FETCH-LOGICAL-c380t-908105fcf704d1f1cb1645a64fc4893f3165afe3e2071417b819109bcb19e2ea3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1437437776/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1437437776?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,11688,27924,27925,36060,44363,74895</link.rule.ids></links><search><creatorcontrib>Lin, Bing-Huei</creatorcontrib><creatorcontrib>Hung, Mao-Wei</creatorcontrib><creatorcontrib>Wang, Jr-Yan</creatorcontrib><creatorcontrib>Wu, Ping-Da</creatorcontrib><title>A lattice model for option pricing under GARCH-jump processes</title><title>Review of derivatives research</title><addtitle>Rev Deriv Res</addtitle><description>This study extends the GARCH pricing tree in Ritchken and Trevor (J Financ 54:366–402, 1999 ) by incorporating an additional jump process to develop a lattice model to value options. The GARCH-jump model can capture the behavior of asset prices more appropriately given its consistency with abundant empirical findings that discontinuities in the sample path of financial asset prices still being found even allowing for autoregressive conditional heteroskedasticity. With our lattice model, it shows that both the GARCH and jump effects in the GARCH-jump model are negative for near-the-money options, while positive for in-the-money and out-of-the-money options. In addition, even when the GARCH model is considered, the jump process impedes the early exercise and thus reduces the percentage of the early exercise premium of American options, particularly for shorter-term horizons. Moreover, the interaction between the GARCH and jump processes can raise the percentage proportions of the early exercise premiums for shorter-term horizons, whereas this effect weakens when the time to maturity increases.</description><subject>Derivatives</subject><subject>Economic statistics</subject><subject>Economic theory</subject><subject>Economics and Finance</subject><subject>Finance</subject><subject>Investments and Securities</subject><subject>Options markets</subject><subject>Options trading</subject><subject>Securities prices</subject><subject>Skewness</subject><subject>Stochastic models</subject><subject>Stock exchanges</subject><subject>Studies</subject><issn>1380-6645</issn><issn>1573-7144</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>M0C</sourceid><recordid>eNp1kEFLxDAQhYMouK7-AG8Bz9FMkzbtwcOy6CosCKLn0KaTpWW3WZP24L93lnrwIgQSmO_Ne3mM3YK8BynNQwIAbYSETFSyNKI8YwvIjRIGtD6ntyqlKAqdX7KrlHopSZWrBXtc8X09jp1Dfggt7rkPkYfj2IWBH2PnumHHp6HFyDer9_WL6KfDkQbBYUqYrtmFr_cJb37vJft8fvogbPu2eV2vtsKR7XhKBDL3zhupW_DgGqAkdaG902WlvIIirz0qzCTFBdOUUIGsGuIqzLBWS3Y37yXnrwnTaPswxYEsLWhl6BhTEAUz5WJIKaK39INDHb8tSHtqyc4tWWrJnlqyJWmyWZOIHXYY_2z-V_QDFKloLQ</recordid><startdate>20131001</startdate><enddate>20131001</enddate><creator>Lin, Bing-Huei</creator><creator>Hung, Mao-Wei</creator><creator>Wang, Jr-Yan</creator><creator>Wu, Ping-Da</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>0U~</scope><scope>1-H</scope><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>885</scope><scope>8AO</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ANIOZ</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRAZJ</scope><scope>FRNLG</scope><scope>F~G</scope><scope>K60</scope><scope>K6~</scope><scope>L.-</scope><scope>L.0</scope><scope>M0C</scope><scope>M1F</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope></search><sort><creationdate>20131001</creationdate><title>A lattice model for option pricing under GARCH-jump processes</title><author>Lin, Bing-Huei ; Hung, Mao-Wei ; Wang, Jr-Yan ; Wu, Ping-Da</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c380t-908105fcf704d1f1cb1645a64fc4893f3165afe3e2071417b819109bcb19e2ea3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Derivatives</topic><topic>Economic statistics</topic><topic>Economic theory</topic><topic>Economics and Finance</topic><topic>Finance</topic><topic>Investments and Securities</topic><topic>Options markets</topic><topic>Options trading</topic><topic>Securities prices</topic><topic>Skewness</topic><topic>Stochastic models</topic><topic>Stock exchanges</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lin, Bing-Huei</creatorcontrib><creatorcontrib>Hung, Mao-Wei</creatorcontrib><creatorcontrib>Wang, Jr-Yan</creatorcontrib><creatorcontrib>Wu, Ping-Da</creatorcontrib><collection>CrossRef</collection><collection>Global News &amp; ABI/Inform Professional</collection><collection>Trade PRO</collection><collection>ProQuest Central (Corporate)</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Banking Information Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Accounting, Tax &amp; Banking Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Business Premium Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Accounting, Tax &amp; Banking Collection (Alumni)</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Professional Standard</collection><collection>ABI/INFORM Global</collection><collection>Banking Information Database</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Review of derivatives research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lin, Bing-Huei</au><au>Hung, Mao-Wei</au><au>Wang, Jr-Yan</au><au>Wu, Ping-Da</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A lattice model for option pricing under GARCH-jump processes</atitle><jtitle>Review of derivatives research</jtitle><stitle>Rev Deriv Res</stitle><date>2013-10-01</date><risdate>2013</risdate><volume>16</volume><issue>3</issue><spage>295</spage><epage>329</epage><pages>295-329</pages><issn>1380-6645</issn><eissn>1573-7144</eissn><abstract>This study extends the GARCH pricing tree in Ritchken and Trevor (J Financ 54:366–402, 1999 ) by incorporating an additional jump process to develop a lattice model to value options. The GARCH-jump model can capture the behavior of asset prices more appropriately given its consistency with abundant empirical findings that discontinuities in the sample path of financial asset prices still being found even allowing for autoregressive conditional heteroskedasticity. With our lattice model, it shows that both the GARCH and jump effects in the GARCH-jump model are negative for near-the-money options, while positive for in-the-money and out-of-the-money options. In addition, even when the GARCH model is considered, the jump process impedes the early exercise and thus reduces the percentage of the early exercise premium of American options, particularly for shorter-term horizons. Moreover, the interaction between the GARCH and jump processes can raise the percentage proportions of the early exercise premiums for shorter-term horizons, whereas this effect weakens when the time to maturity increases.</abstract><cop>Boston</cop><pub>Springer US</pub><doi>10.1007/s11147-012-9087-8</doi><tpages>35</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1380-6645
ispartof Review of derivatives research, 2013-10, Vol.16 (3), p.295-329
issn 1380-6645
1573-7144
language eng
recordid cdi_proquest_journals_1437437776
source ABI/INFORM Global; Springer Nature
subjects Derivatives
Economic statistics
Economic theory
Economics and Finance
Finance
Investments and Securities
Options markets
Options trading
Securities prices
Skewness
Stochastic models
Stock exchanges
Studies
title A lattice model for option pricing under GARCH-jump processes
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T13%3A42%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20lattice%20model%20for%20option%20pricing%20under%20GARCH-jump%20processes&rft.jtitle=Review%20of%20derivatives%20research&rft.au=Lin,%20Bing-Huei&rft.date=2013-10-01&rft.volume=16&rft.issue=3&rft.spage=295&rft.epage=329&rft.pages=295-329&rft.issn=1380-6645&rft.eissn=1573-7144&rft_id=info:doi/10.1007/s11147-012-9087-8&rft_dat=%3Cproquest_cross%3E3084440561%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c380t-908105fcf704d1f1cb1645a64fc4893f3165afe3e2071417b819109bcb19e2ea3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1437437776&rft_id=info:pmid/&rfr_iscdi=true