Loading…

SVR Learning-Based Spatiotemporal Fuzzy Logic Controller for Nonlinear Spatially Distributed Dynamic Systems

A data-driven 3-D fuzzy-logic controller (3-D FLC) design methodology based on support vector regression (SVR) learning is developed for nonlinear spatially distributed dynamic systems. Initially, the spatial information expression and processing as well as the fuzzy linguistic expression and rule i...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transaction on neural networks and learning systems 2013-10, Vol.24 (10), p.1635-1647
Main Authors: ZHANG, Xian-Xia, YE JIANG, LI, Han-Xiong, LI, Shao-Yuan
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A data-driven 3-D fuzzy-logic controller (3-D FLC) design methodology based on support vector regression (SVR) learning is developed for nonlinear spatially distributed dynamic systems. Initially, the spatial information expression and processing as well as the fuzzy linguistic expression and rule inference of a 3-D FLC are integrated into spatial fuzzy basis functions (SFBFs), and then the 3-D FLC can be depicted by a three-layer network structure. By relating SFBFs of the 3-D FLC directly to spatial kernel functions of an SVR, an equivalence relationship of the 3-D FLC and the SVR is established, which means that the 3-D FLC can be designed with the help of the SVR learning. Subsequently, for an easy implementation, a systematic SVR learning-based 3-D FLC design scheme is formulated. In addition, the universal approximation capability of the proposed 3-D FLC is presented. Finally, the control of a nonlinear catalytic packed-bed reactor is considered as an application to demonstrate the effectiveness of the proposed 3-D FLC.
ISSN:2162-237X
2162-2388
DOI:10.1109/TNNLS.2013.2258356