Loading…

A Computational Study on the Mechanism of the Formose Reaction Catalyzed by the Thiazolium Salt

The mechanism of the formose reaction catalyzed by thiazolium salt was investigated by MOPAC-PM3 semi-empirical molecular orbital (MO) method in order to elucidate the factor(s) stabilizing the reaction intermediates. We assumed that one factor was the formation of an ion pair with the ammonium ion...

Full description

Saved in:
Bibliographic Details
Published in:Journal of Computer Chemistry, Japan Japan, 2003, Vol.2(4), pp.127-134
Main Authors: TAJIMA, Hideo, INOUE, Hakuai, ITO, Masato M.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The mechanism of the formose reaction catalyzed by thiazolium salt was investigated by MOPAC-PM3 semi-empirical molecular orbital (MO) method in order to elucidate the factor(s) stabilizing the reaction intermediates. We assumed that one factor was the formation of an ion pair with the ammonium ion in the reaction medium. Based on this assumption, possible intermediates were examined, including their structures and the heats of formation were calculated. It was suggested that the formation of an ion pair between the zwitterion intermediate (II*) and an ammonium ion and the subsequent formation of the intermediate, 2-hydroxymethyl-3-ethyl-5-(2-hydroxyethyl)-4-methylthiazolium (II**), were crucial for the reaction. A more plausible mechanism for the initial stage of the formose reaction is proposed based on calculation results.
ISSN:1347-1767
1347-3824
DOI:10.2477/jccj.2.127