Loading…
Unsaturated Fatty Acids in Fish Oil Play a Role in Adequate Fat Distribution to Plasma, Liver and White Adipose Tissue
The components bringing the effects of fish oil on glucose and lipid metabolism are unclear. We used hydrogenated fish oil, which has saturated fatty acids with the same carbon chain lengths as the unsaturated fatty acids in fish oil, to clarify the functions of these unsaturated fatty acids on the...
Saved in:
Published in: | Journal of Health Science 2011, Vol.57(4), pp.341-349 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The components bringing the effects of fish oil on glucose and lipid metabolism are unclear. We used hydrogenated fish oil, which has saturated fatty acids with the same carbon chain lengths as the unsaturated fatty acids in fish oil, to clarify the functions of these unsaturated fatty acids on the improvements in lipid and glucose metabolism in mice. Mice divided into 3 groups were fed different diets: fish oil diet (FO), hydrogenated fish oil diet (HFO), and soybean oil diet (SBO) as a control. Body weight gain and white adipose tissue weight in the HFO and FO groups were significantly decreased compared with those in the SBO group. However, in the HFO group, the triglyceride (TG) levels in plasma were significantly decreased, while the lipids levels in the liver were remarkably increased compared with those in the FO group. Regarding the fatty acid composition in the liver and white adipose tissue in the HFO group, in parallel with the up-regulation of stearoyl-CoA desaturase 1 mRNA, relative amounts of C16:1 and C18:1 were significantly increased. By contrast, blood glucose levels in the oral glucose tolerance test had not deteriorated in the HFO group. Our results indicate that unsaturated fatty acids in the FO diet decrease lipid levels in the liver and maintain the balance of lipid levels in plasma, liver and white adipose tissue; in addition, in the HFO group, C16:1 and C18:1 synthesized in the liver and white adipose tissue may improve glucose tolerance and lipid metabolism. |
---|---|
ISSN: | 1344-9702 1347-5207 |
DOI: | 10.1248/jhs.57.341 |