Loading…

Design of Robust Predictive Control Laws Using Set Membership Identified Models

This paper investigates the robust design of nonlinear model predictive control (NMPC) laws that employ approximated models, derived directly from process input‐output data. In particular, a nonlinear set membership (NSM) identification technique is used to obtain a system model and a bound of the r...

Full description

Saved in:
Bibliographic Details
Published in:Asian journal of control 2013-11, Vol.15 (6), p.1714-1722
Main Authors: Canale, M., Fagiano, L., Signorile, M.C.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c3310-54c869f9cc2dd33baa3d9e694427d1a79f8806ed269e8cc4e2a4323e2185ba243
cites cdi_FETCH-LOGICAL-c3310-54c869f9cc2dd33baa3d9e694427d1a79f8806ed269e8cc4e2a4323e2185ba243
container_end_page 1722
container_issue 6
container_start_page 1714
container_title Asian journal of control
container_volume 15
creator Canale, M.
Fagiano, L.
Signorile, M.C.
description This paper investigates the robust design of nonlinear model predictive control (NMPC) laws that employ approximated models, derived directly from process input‐output data. In particular, a nonlinear set membership (NSM) identification technique is used to obtain a system model and a bound of the related uncertainty. The latter is used to carry out a robust control design, via a min‐max formulation of the optimal control problem underlying the NMPC methodology. A numerical example with a nonlinear oscillator shows the effectiveness of the proposed approach.
doi_str_mv 10.1002/asjc.560
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1444823064</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3108319051</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3310-54c869f9cc2dd33baa3d9e694427d1a79f8806ed269e8cc4e2a4323e2185ba243</originalsourceid><addsrcrecordid>eNp10E1PAjEQgOGN0UREE39CEy9eFvu1pT0iKmpAjUjg1pR2Fouwi-0i-u9dgjHx4Gnm8GQmeZPklOAWwZhemDi3rUzgvaRBFOOpwIrt13smSCoFzQ6ToxjnGAvCZNZIHq8g-lmByhw9l9N1rNBTAOdt5T8AdcuiCuUC9c0molH0xQwNoUIDWE4hxFe_QncOisrnHhwalA4W8Tg5yM0iwsnPbCajm-uX7m3af-zddTv91DJGcJpxK4XKlbXUOcamxjCnQCjOadsR01a5lFiAo0KBtJYDNZxRBpTIbGooZ83kbHd3Fcr3NcRKz8t1KOqXmnDOJWVYbNX5TtlQxhgg16vglyZ8aYL1Npfe5tJ1rpqmO7rxC_j61-nO8L77x_tYweevN-FNizZrZ3r80NNPk95ATS7HWrJvhSJ6bQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1444823064</pqid></control><display><type>article</type><title>Design of Robust Predictive Control Laws Using Set Membership Identified Models</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Canale, M. ; Fagiano, L. ; Signorile, M.C.</creator><creatorcontrib>Canale, M. ; Fagiano, L. ; Signorile, M.C.</creatorcontrib><description>This paper investigates the robust design of nonlinear model predictive control (NMPC) laws that employ approximated models, derived directly from process input‐output data. In particular, a nonlinear set membership (NSM) identification technique is used to obtain a system model and a bound of the related uncertainty. The latter is used to carry out a robust control design, via a min‐max formulation of the optimal control problem underlying the NMPC methodology. A numerical example with a nonlinear oscillator shows the effectiveness of the proposed approach.</description><identifier>ISSN: 1561-8625</identifier><identifier>EISSN: 1934-6093</identifier><identifier>DOI: 10.1002/asjc.560</identifier><language>eng</language><publisher>Hoboken: Blackwell Publishing Ltd</publisher><subject>Controllers ; Mathematical models ; nonlinear control ; Predictive control ; robust stability</subject><ispartof>Asian journal of control, 2013-11, Vol.15 (6), p.1714-1722</ispartof><rights>2012 John Wiley and Sons Asia Pte Ltd and Chinese Automatic Control Society</rights><rights>2013 John Wiley and Sons Asia Pte Ltd and Chinese Automatic Control Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3310-54c869f9cc2dd33baa3d9e694427d1a79f8806ed269e8cc4e2a4323e2185ba243</citedby><cites>FETCH-LOGICAL-c3310-54c869f9cc2dd33baa3d9e694427d1a79f8806ed269e8cc4e2a4323e2185ba243</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Canale, M.</creatorcontrib><creatorcontrib>Fagiano, L.</creatorcontrib><creatorcontrib>Signorile, M.C.</creatorcontrib><title>Design of Robust Predictive Control Laws Using Set Membership Identified Models</title><title>Asian journal of control</title><addtitle>Asian J Control</addtitle><description>This paper investigates the robust design of nonlinear model predictive control (NMPC) laws that employ approximated models, derived directly from process input‐output data. In particular, a nonlinear set membership (NSM) identification technique is used to obtain a system model and a bound of the related uncertainty. The latter is used to carry out a robust control design, via a min‐max formulation of the optimal control problem underlying the NMPC methodology. A numerical example with a nonlinear oscillator shows the effectiveness of the proposed approach.</description><subject>Controllers</subject><subject>Mathematical models</subject><subject>nonlinear control</subject><subject>Predictive control</subject><subject>robust stability</subject><issn>1561-8625</issn><issn>1934-6093</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNp10E1PAjEQgOGN0UREE39CEy9eFvu1pT0iKmpAjUjg1pR2Fouwi-0i-u9dgjHx4Gnm8GQmeZPklOAWwZhemDi3rUzgvaRBFOOpwIrt13smSCoFzQ6ToxjnGAvCZNZIHq8g-lmByhw9l9N1rNBTAOdt5T8AdcuiCuUC9c0molH0xQwNoUIDWE4hxFe_QncOisrnHhwalA4W8Tg5yM0iwsnPbCajm-uX7m3af-zddTv91DJGcJpxK4XKlbXUOcamxjCnQCjOadsR01a5lFiAo0KBtJYDNZxRBpTIbGooZ83kbHd3Fcr3NcRKz8t1KOqXmnDOJWVYbNX5TtlQxhgg16vglyZ8aYL1Npfe5tJ1rpqmO7rxC_j61-nO8L77x_tYweevN-FNizZrZ3r80NNPk95ATS7HWrJvhSJ6bQ</recordid><startdate>201311</startdate><enddate>201311</enddate><creator>Canale, M.</creator><creator>Fagiano, L.</creator><creator>Signorile, M.C.</creator><general>Blackwell Publishing Ltd</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope></search><sort><creationdate>201311</creationdate><title>Design of Robust Predictive Control Laws Using Set Membership Identified Models</title><author>Canale, M. ; Fagiano, L. ; Signorile, M.C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3310-54c869f9cc2dd33baa3d9e694427d1a79f8806ed269e8cc4e2a4323e2185ba243</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Controllers</topic><topic>Mathematical models</topic><topic>nonlinear control</topic><topic>Predictive control</topic><topic>robust stability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Canale, M.</creatorcontrib><creatorcontrib>Fagiano, L.</creatorcontrib><creatorcontrib>Signorile, M.C.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><jtitle>Asian journal of control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Canale, M.</au><au>Fagiano, L.</au><au>Signorile, M.C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Design of Robust Predictive Control Laws Using Set Membership Identified Models</atitle><jtitle>Asian journal of control</jtitle><addtitle>Asian J Control</addtitle><date>2013-11</date><risdate>2013</risdate><volume>15</volume><issue>6</issue><spage>1714</spage><epage>1722</epage><pages>1714-1722</pages><issn>1561-8625</issn><eissn>1934-6093</eissn><abstract>This paper investigates the robust design of nonlinear model predictive control (NMPC) laws that employ approximated models, derived directly from process input‐output data. In particular, a nonlinear set membership (NSM) identification technique is used to obtain a system model and a bound of the related uncertainty. The latter is used to carry out a robust control design, via a min‐max formulation of the optimal control problem underlying the NMPC methodology. A numerical example with a nonlinear oscillator shows the effectiveness of the proposed approach.</abstract><cop>Hoboken</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1002/asjc.560</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1561-8625
ispartof Asian journal of control, 2013-11, Vol.15 (6), p.1714-1722
issn 1561-8625
1934-6093
language eng
recordid cdi_proquest_journals_1444823064
source Wiley-Blackwell Read & Publish Collection
subjects Controllers
Mathematical models
nonlinear control
Predictive control
robust stability
title Design of Robust Predictive Control Laws Using Set Membership Identified Models
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T12%3A45%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Design%20of%20Robust%20Predictive%20Control%20Laws%20Using%20Set%20Membership%20Identified%20Models&rft.jtitle=Asian%20journal%20of%20control&rft.au=Canale,%20M.&rft.date=2013-11&rft.volume=15&rft.issue=6&rft.spage=1714&rft.epage=1722&rft.pages=1714-1722&rft.issn=1561-8625&rft.eissn=1934-6093&rft_id=info:doi/10.1002/asjc.560&rft_dat=%3Cproquest_cross%3E3108319051%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3310-54c869f9cc2dd33baa3d9e694427d1a79f8806ed269e8cc4e2a4323e2185ba243%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1444823064&rft_id=info:pmid/&rfr_iscdi=true