Loading…
Design of Robust Predictive Control Laws Using Set Membership Identified Models
This paper investigates the robust design of nonlinear model predictive control (NMPC) laws that employ approximated models, derived directly from process input‐output data. In particular, a nonlinear set membership (NSM) identification technique is used to obtain a system model and a bound of the r...
Saved in:
Published in: | Asian journal of control 2013-11, Vol.15 (6), p.1714-1722 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c3310-54c869f9cc2dd33baa3d9e694427d1a79f8806ed269e8cc4e2a4323e2185ba243 |
---|---|
cites | cdi_FETCH-LOGICAL-c3310-54c869f9cc2dd33baa3d9e694427d1a79f8806ed269e8cc4e2a4323e2185ba243 |
container_end_page | 1722 |
container_issue | 6 |
container_start_page | 1714 |
container_title | Asian journal of control |
container_volume | 15 |
creator | Canale, M. Fagiano, L. Signorile, M.C. |
description | This paper investigates the robust design of nonlinear model predictive control (NMPC) laws that employ approximated models, derived directly from process input‐output data. In particular, a nonlinear set membership (NSM) identification technique is used to obtain a system model and a bound of the related uncertainty. The latter is used to carry out a robust control design, via a min‐max formulation of the optimal control problem underlying the NMPC methodology. A numerical example with a nonlinear oscillator shows the effectiveness of the proposed approach. |
doi_str_mv | 10.1002/asjc.560 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1444823064</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3108319051</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3310-54c869f9cc2dd33baa3d9e694427d1a79f8806ed269e8cc4e2a4323e2185ba243</originalsourceid><addsrcrecordid>eNp10E1PAjEQgOGN0UREE39CEy9eFvu1pT0iKmpAjUjg1pR2Fouwi-0i-u9dgjHx4Gnm8GQmeZPklOAWwZhemDi3rUzgvaRBFOOpwIrt13smSCoFzQ6ToxjnGAvCZNZIHq8g-lmByhw9l9N1rNBTAOdt5T8AdcuiCuUC9c0molH0xQwNoUIDWE4hxFe_QncOisrnHhwalA4W8Tg5yM0iwsnPbCajm-uX7m3af-zddTv91DJGcJpxK4XKlbXUOcamxjCnQCjOadsR01a5lFiAo0KBtJYDNZxRBpTIbGooZ83kbHd3Fcr3NcRKz8t1KOqXmnDOJWVYbNX5TtlQxhgg16vglyZ8aYL1Npfe5tJ1rpqmO7rxC_j61-nO8L77x_tYweevN-FNizZrZ3r80NNPk95ATS7HWrJvhSJ6bQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1444823064</pqid></control><display><type>article</type><title>Design of Robust Predictive Control Laws Using Set Membership Identified Models</title><source>Wiley-Blackwell Read & Publish Collection</source><creator>Canale, M. ; Fagiano, L. ; Signorile, M.C.</creator><creatorcontrib>Canale, M. ; Fagiano, L. ; Signorile, M.C.</creatorcontrib><description>This paper investigates the robust design of nonlinear model predictive control (NMPC) laws that employ approximated models, derived directly from process input‐output data. In particular, a nonlinear set membership (NSM) identification technique is used to obtain a system model and a bound of the related uncertainty. The latter is used to carry out a robust control design, via a min‐max formulation of the optimal control problem underlying the NMPC methodology. A numerical example with a nonlinear oscillator shows the effectiveness of the proposed approach.</description><identifier>ISSN: 1561-8625</identifier><identifier>EISSN: 1934-6093</identifier><identifier>DOI: 10.1002/asjc.560</identifier><language>eng</language><publisher>Hoboken: Blackwell Publishing Ltd</publisher><subject>Controllers ; Mathematical models ; nonlinear control ; Predictive control ; robust stability</subject><ispartof>Asian journal of control, 2013-11, Vol.15 (6), p.1714-1722</ispartof><rights>2012 John Wiley and Sons Asia Pte Ltd and Chinese Automatic Control Society</rights><rights>2013 John Wiley and Sons Asia Pte Ltd and Chinese Automatic Control Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3310-54c869f9cc2dd33baa3d9e694427d1a79f8806ed269e8cc4e2a4323e2185ba243</citedby><cites>FETCH-LOGICAL-c3310-54c869f9cc2dd33baa3d9e694427d1a79f8806ed269e8cc4e2a4323e2185ba243</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Canale, M.</creatorcontrib><creatorcontrib>Fagiano, L.</creatorcontrib><creatorcontrib>Signorile, M.C.</creatorcontrib><title>Design of Robust Predictive Control Laws Using Set Membership Identified Models</title><title>Asian journal of control</title><addtitle>Asian J Control</addtitle><description>This paper investigates the robust design of nonlinear model predictive control (NMPC) laws that employ approximated models, derived directly from process input‐output data. In particular, a nonlinear set membership (NSM) identification technique is used to obtain a system model and a bound of the related uncertainty. The latter is used to carry out a robust control design, via a min‐max formulation of the optimal control problem underlying the NMPC methodology. A numerical example with a nonlinear oscillator shows the effectiveness of the proposed approach.</description><subject>Controllers</subject><subject>Mathematical models</subject><subject>nonlinear control</subject><subject>Predictive control</subject><subject>robust stability</subject><issn>1561-8625</issn><issn>1934-6093</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNp10E1PAjEQgOGN0UREE39CEy9eFvu1pT0iKmpAjUjg1pR2Fouwi-0i-u9dgjHx4Gnm8GQmeZPklOAWwZhemDi3rUzgvaRBFOOpwIrt13smSCoFzQ6ToxjnGAvCZNZIHq8g-lmByhw9l9N1rNBTAOdt5T8AdcuiCuUC9c0molH0xQwNoUIDWE4hxFe_QncOisrnHhwalA4W8Tg5yM0iwsnPbCajm-uX7m3af-zddTv91DJGcJpxK4XKlbXUOcamxjCnQCjOadsR01a5lFiAo0KBtJYDNZxRBpTIbGooZ83kbHd3Fcr3NcRKz8t1KOqXmnDOJWVYbNX5TtlQxhgg16vglyZ8aYL1Npfe5tJ1rpqmO7rxC_j61-nO8L77x_tYweevN-FNizZrZ3r80NNPk95ATS7HWrJvhSJ6bQ</recordid><startdate>201311</startdate><enddate>201311</enddate><creator>Canale, M.</creator><creator>Fagiano, L.</creator><creator>Signorile, M.C.</creator><general>Blackwell Publishing Ltd</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope></search><sort><creationdate>201311</creationdate><title>Design of Robust Predictive Control Laws Using Set Membership Identified Models</title><author>Canale, M. ; Fagiano, L. ; Signorile, M.C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3310-54c869f9cc2dd33baa3d9e694427d1a79f8806ed269e8cc4e2a4323e2185ba243</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Controllers</topic><topic>Mathematical models</topic><topic>nonlinear control</topic><topic>Predictive control</topic><topic>robust stability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Canale, M.</creatorcontrib><creatorcontrib>Fagiano, L.</creatorcontrib><creatorcontrib>Signorile, M.C.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><jtitle>Asian journal of control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Canale, M.</au><au>Fagiano, L.</au><au>Signorile, M.C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Design of Robust Predictive Control Laws Using Set Membership Identified Models</atitle><jtitle>Asian journal of control</jtitle><addtitle>Asian J Control</addtitle><date>2013-11</date><risdate>2013</risdate><volume>15</volume><issue>6</issue><spage>1714</spage><epage>1722</epage><pages>1714-1722</pages><issn>1561-8625</issn><eissn>1934-6093</eissn><abstract>This paper investigates the robust design of nonlinear model predictive control (NMPC) laws that employ approximated models, derived directly from process input‐output data. In particular, a nonlinear set membership (NSM) identification technique is used to obtain a system model and a bound of the related uncertainty. The latter is used to carry out a robust control design, via a min‐max formulation of the optimal control problem underlying the NMPC methodology. A numerical example with a nonlinear oscillator shows the effectiveness of the proposed approach.</abstract><cop>Hoboken</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1002/asjc.560</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1561-8625 |
ispartof | Asian journal of control, 2013-11, Vol.15 (6), p.1714-1722 |
issn | 1561-8625 1934-6093 |
language | eng |
recordid | cdi_proquest_journals_1444823064 |
source | Wiley-Blackwell Read & Publish Collection |
subjects | Controllers Mathematical models nonlinear control Predictive control robust stability |
title | Design of Robust Predictive Control Laws Using Set Membership Identified Models |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T12%3A45%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Design%20of%20Robust%20Predictive%20Control%20Laws%20Using%20Set%20Membership%20Identified%20Models&rft.jtitle=Asian%20journal%20of%20control&rft.au=Canale,%20M.&rft.date=2013-11&rft.volume=15&rft.issue=6&rft.spage=1714&rft.epage=1722&rft.pages=1714-1722&rft.issn=1561-8625&rft.eissn=1934-6093&rft_id=info:doi/10.1002/asjc.560&rft_dat=%3Cproquest_cross%3E3108319051%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3310-54c869f9cc2dd33baa3d9e694427d1a79f8806ed269e8cc4e2a4323e2185ba243%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1444823064&rft_id=info:pmid/&rfr_iscdi=true |