Loading…

Response of DNA Repair Enzymes in Murine Fibrosarcoma,Lymphosarcoma and Ascites Cells Following Gamma Irradiation

The response of different tumours to radiation varies. This variation has been attributed to, among others, varying DNA repair capabilities The response of three tumour lines, differing in their sensitivities to radiation, namely, murine fibrosarcoma, lymphosarcoma and ascites, was studied by follow...

Full description

Saved in:
Bibliographic Details
Published in:JOURNAL OF RADIATION RESEARCH 2003-09, Vol.44 (3), p.229-235
Main Authors: Pasupathy, Karpagam, Nair, Cherupally Krishnan K
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The response of different tumours to radiation varies. This variation has been attributed to, among others, varying DNA repair capabilities The response of three tumour lines, differing in their sensitivities to radiation, namely, murine fibrosarcoma, lymphosarcoma and ascites, was studied by following the activities of enzymes known to be involved in DNA repair. The activities of poly (ADP-ribose) polymerase (PARP), DNA polymerase β and DNA ligase in fibrosarcoma, lymphosarcoma and ascites recorded varying degrees of increase following gamma irradiation (2 Gy). The increase was more pronounced in fibrosarcoma, which recorded a maximum 2 h after irradiation for β polymerase, and at 4 h for ligase and PARP, thereafter declining to near normal levels after 24 h. In contrast, the activity of DNA Topoisomerase I declined, corresponding to an increase in the PARP activity. The maximum increase in the activity of β polymerase, ligase and PARP from lymphosarcoma and ascites was observed 2 h after irradiation with a corresponding decrease in Topoisomerase I activity. Search for the target enzymes and proteins for modification by PARP in gamma -irradiated fibrosarcoma tumour cells revealed that nuclei, and not chromatin, were preferentially modified by PARP. Among the nuclear proteins, histones were found to be ribosylated. The enzyme topoisomerase was ribosylated by PARP in vitro, and this modification was found to inhibit topoisomerase activity. We speculate that a possible role of PARP is to coordinate the activities of other enzymes in DNA repair by selectively inhibiting certain enzymes by the ribosylation process.
ISSN:0449-3060
1349-9157
DOI:10.1269/jrr.44.229