Loading…
Effect of Formulation and Application Time of Day on Detecting Dicamba in the Air under Field Conditions
The development of dicamba-tolerant and other auxin-tolerant crops will enable the use of these effective herbicides in soybean and cotton at application timings such as at planting or over-the-top that are not currently possible. This research examined the effect of various factors on detection of...
Saved in:
Published in: | Weed science 2013-10, Vol.61 (4), p.586-593 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-b425t-c8349c60adbef11b4b09dc87577615efd8e56ffe9aa0f10cb1a33f92d3c65a573 |
---|---|
cites | cdi_FETCH-LOGICAL-b425t-c8349c60adbef11b4b09dc87577615efd8e56ffe9aa0f10cb1a33f92d3c65a573 |
container_end_page | 593 |
container_issue | 4 |
container_start_page | 586 |
container_title | Weed science |
container_volume | 61 |
creator | Mueller, Thomas C. Wright, Daniel R. Remund, Kirk M. |
description | The development of dicamba-tolerant and other auxin-tolerant crops will enable the use of these effective herbicides in soybean and cotton at application timings such as at planting or over-the-top that are not currently possible. This research examined the effect of various factors on detection of postapplication amounts of dicamba in the air under field conditions by coupling a sample collection system with advanced chemical analysis of those samples. The quantity of dimethylamine salt of dicamba that was detected within 48 hr after application was two times greater (P < 0.05) than the quantity of diglycoamine salt formulation based on field studies in 2009. Regardless of application timing, the amount of detected dicamba was greatest during the 0 to 12 hr time period after application. However, the total detected after 48 hr was less for evening applications (5 micrograms [µg]) compared with midday (17 µg) or morning (14 µg) applications based on 2010 field trials. Average ambient air temperature (and other weather variables) correlated with higher detection levels of dicamba in the air in the field. Nomenclature: Dicamba, soybean, Glycine max (L.) Merr. |
doi_str_mv | 10.1614/WS-D-12-00178.1 |
format | article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_1459396696</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1614_WS_D_12_00178_1</cupid><jstor_id>43699832</jstor_id><sourcerecordid>43699832</sourcerecordid><originalsourceid>FETCH-LOGICAL-b425t-c8349c60adbef11b4b09dc87577615efd8e56ffe9aa0f10cb1a33f92d3c65a573</originalsourceid><addsrcrecordid>eNqFkM1rGzEQxUVoIW7ac0-lgtLjJhpppV0djTdOC4EenJCj0OrDkVmvXGl9yH9fOWtCL6UXiWF-782bQegzkGsQUN88baquAloRAk17DRdoAZyTijZcvkMLQmpWQVPzS_Qh512BBAW5QM-33jsz4ejxOqb9cdBTiCPWo8XLw2EIZq4fwt6dmE6_4FJ2biqiMG5xV4h9r3EY8fTs8DIkfBytS3gd3GDxKo42nBzyR_Te6yG7T-f_Cj2ubx9WP6r7X3c_V8v7qq8pnyrTsloaQbTtnQfo655Ia9qGN40A7rxtHRclstSaeCCmB82Yl9QyI7jmDbtC32bfQ4q_jy5PahePaSwjFdRcMimEFIW6mSmTYs7JeXVIYa_TiwKiTudUTxvVKaDq9ZwKiuL72Vdnowef9GhCfpPRpi0yIgv3ZeZ2eYrprV8zIWXLaOl_nfteR6W3qXg8bigBTkh5qThlg3O2ctkU7Nb9tcI_01Wzpg8xju6_2_wBxuylbg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1459396696</pqid></control><display><type>article</type><title>Effect of Formulation and Application Time of Day on Detecting Dicamba in the Air under Field Conditions</title><source>JSTOR Archival Journals and Primary Sources Collection</source><source>Cambridge University Press</source><creator>Mueller, Thomas C. ; Wright, Daniel R. ; Remund, Kirk M.</creator><creatorcontrib>Mueller, Thomas C. ; Wright, Daniel R. ; Remund, Kirk M.</creatorcontrib><description>The development of dicamba-tolerant and other auxin-tolerant crops will enable the use of these effective herbicides in soybean and cotton at application timings such as at planting or over-the-top that are not currently possible. This research examined the effect of various factors on detection of postapplication amounts of dicamba in the air under field conditions by coupling a sample collection system with advanced chemical analysis of those samples. The quantity of dimethylamine salt of dicamba that was detected within 48 hr after application was two times greater (P < 0.05) than the quantity of diglycoamine salt formulation based on field studies in 2009. Regardless of application timing, the amount of detected dicamba was greatest during the 0 to 12 hr time period after application. However, the total detected after 48 hr was less for evening applications (5 micrograms [µg]) compared with midday (17 µg) or morning (14 µg) applications based on 2010 field trials. Average ambient air temperature (and other weather variables) correlated with higher detection levels of dicamba in the air in the field. Nomenclature: Dicamba, soybean, Glycine max (L.) Merr.</description><identifier>ISSN: 0043-1745</identifier><identifier>EISSN: 1550-2759</identifier><identifier>DOI: 10.1614/WS-D-12-00178.1</identifier><identifier>CODEN: WEESA6</identifier><language>eng</language><publisher>810 East 10th Street, Lawrence, KS 66044-8897: Weed Science Society of America</publisher><subject>air ; Air sampling ; Air temperature ; Ambient temperature ; application timing ; Biological and medical sciences ; Chemical analysis ; Chemical control ; cotton ; crops ; Dicamba ; dimethylamine ; drift ; Fertilizer application timing ; field experimentation ; Fundamental and applied biological sciences. Psychology ; Glycine max ; Herbicides ; off-site movement ; Parasitic plants. Weeds ; Phytopathology. Animal pests. Plant and forest protection ; planting ; Plants ; Relative humidity ; Salts ; SOIL, AIR, AND WATER ; Soybeans ; stewardship ; Studies ; Temperature ; Vapors ; Volatility ; Weather ; weed science ; Weeds</subject><ispartof>Weed science, 2013-10, Vol.61 (4), p.586-593</ispartof><rights>Weed Science Society of America</rights><rights>Copyright © Weed Science Society of America</rights><rights>Copyright 2013 Weed Science Society of America</rights><rights>2014 INIST-CNRS</rights><rights>Copyright Allen Press Publishing Services Oct-Dec 2013</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-b425t-c8349c60adbef11b4b09dc87577615efd8e56ffe9aa0f10cb1a33f92d3c65a573</citedby><cites>FETCH-LOGICAL-b425t-c8349c60adbef11b4b09dc87577615efd8e56ffe9aa0f10cb1a33f92d3c65a573</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/43699832$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S004317450001345X/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,58238,58471,72960</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27816109$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Mueller, Thomas C.</creatorcontrib><creatorcontrib>Wright, Daniel R.</creatorcontrib><creatorcontrib>Remund, Kirk M.</creatorcontrib><title>Effect of Formulation and Application Time of Day on Detecting Dicamba in the Air under Field Conditions</title><title>Weed science</title><addtitle>Weed sci</addtitle><description>The development of dicamba-tolerant and other auxin-tolerant crops will enable the use of these effective herbicides in soybean and cotton at application timings such as at planting or over-the-top that are not currently possible. This research examined the effect of various factors on detection of postapplication amounts of dicamba in the air under field conditions by coupling a sample collection system with advanced chemical analysis of those samples. The quantity of dimethylamine salt of dicamba that was detected within 48 hr after application was two times greater (P < 0.05) than the quantity of diglycoamine salt formulation based on field studies in 2009. Regardless of application timing, the amount of detected dicamba was greatest during the 0 to 12 hr time period after application. However, the total detected after 48 hr was less for evening applications (5 micrograms [µg]) compared with midday (17 µg) or morning (14 µg) applications based on 2010 field trials. Average ambient air temperature (and other weather variables) correlated with higher detection levels of dicamba in the air in the field. Nomenclature: Dicamba, soybean, Glycine max (L.) Merr.</description><subject>air</subject><subject>Air sampling</subject><subject>Air temperature</subject><subject>Ambient temperature</subject><subject>application timing</subject><subject>Biological and medical sciences</subject><subject>Chemical analysis</subject><subject>Chemical control</subject><subject>cotton</subject><subject>crops</subject><subject>Dicamba</subject><subject>dimethylamine</subject><subject>drift</subject><subject>Fertilizer application timing</subject><subject>field experimentation</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Glycine max</subject><subject>Herbicides</subject><subject>off-site movement</subject><subject>Parasitic plants. Weeds</subject><subject>Phytopathology. Animal pests. Plant and forest protection</subject><subject>planting</subject><subject>Plants</subject><subject>Relative humidity</subject><subject>Salts</subject><subject>SOIL, AIR, AND WATER</subject><subject>Soybeans</subject><subject>stewardship</subject><subject>Studies</subject><subject>Temperature</subject><subject>Vapors</subject><subject>Volatility</subject><subject>Weather</subject><subject>weed science</subject><subject>Weeds</subject><issn>0043-1745</issn><issn>1550-2759</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqFkM1rGzEQxUVoIW7ac0-lgtLjJhpppV0djTdOC4EenJCj0OrDkVmvXGl9yH9fOWtCL6UXiWF-782bQegzkGsQUN88baquAloRAk17DRdoAZyTijZcvkMLQmpWQVPzS_Qh512BBAW5QM-33jsz4ejxOqb9cdBTiCPWo8XLw2EIZq4fwt6dmE6_4FJ2biqiMG5xV4h9r3EY8fTs8DIkfBytS3gd3GDxKo42nBzyR_Te6yG7T-f_Cj2ubx9WP6r7X3c_V8v7qq8pnyrTsloaQbTtnQfo655Ia9qGN40A7rxtHRclstSaeCCmB82Yl9QyI7jmDbtC32bfQ4q_jy5PahePaSwjFdRcMimEFIW6mSmTYs7JeXVIYa_TiwKiTudUTxvVKaDq9ZwKiuL72Vdnowef9GhCfpPRpi0yIgv3ZeZ2eYrprV8zIWXLaOl_nfteR6W3qXg8bigBTkh5qThlg3O2ctkU7Nb9tcI_01Wzpg8xju6_2_wBxuylbg</recordid><startdate>20131001</startdate><enddate>20131001</enddate><creator>Mueller, Thomas C.</creator><creator>Wright, Daniel R.</creator><creator>Remund, Kirk M.</creator><general>Weed Science Society of America</general><general>Cambridge University Press</general><scope>FBQ</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7SS</scope><scope>7T7</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7XB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>LK8</scope><scope>M0K</scope><scope>M2O</scope><scope>M7N</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P64</scope><scope>PADUT</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>RC3</scope></search><sort><creationdate>20131001</creationdate><title>Effect of Formulation and Application Time of Day on Detecting Dicamba in the Air under Field Conditions</title><author>Mueller, Thomas C. ; Wright, Daniel R. ; Remund, Kirk M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-b425t-c8349c60adbef11b4b09dc87577615efd8e56ffe9aa0f10cb1a33f92d3c65a573</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>air</topic><topic>Air sampling</topic><topic>Air temperature</topic><topic>Ambient temperature</topic><topic>application timing</topic><topic>Biological and medical sciences</topic><topic>Chemical analysis</topic><topic>Chemical control</topic><topic>cotton</topic><topic>crops</topic><topic>Dicamba</topic><topic>dimethylamine</topic><topic>drift</topic><topic>Fertilizer application timing</topic><topic>field experimentation</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Glycine max</topic><topic>Herbicides</topic><topic>off-site movement</topic><topic>Parasitic plants. Weeds</topic><topic>Phytopathology. Animal pests. Plant and forest protection</topic><topic>planting</topic><topic>Plants</topic><topic>Relative humidity</topic><topic>Salts</topic><topic>SOIL, AIR, AND WATER</topic><topic>Soybeans</topic><topic>stewardship</topic><topic>Studies</topic><topic>Temperature</topic><topic>Vapors</topic><topic>Volatility</topic><topic>Weather</topic><topic>weed science</topic><topic>Weeds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mueller, Thomas C.</creatorcontrib><creatorcontrib>Wright, Daniel R.</creatorcontrib><creatorcontrib>Remund, Kirk M.</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agriculture Science Database</collection><collection>ProQuest research library</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>ProQuest Biological Science Journals</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Research Library China</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><jtitle>Weed science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mueller, Thomas C.</au><au>Wright, Daniel R.</au><au>Remund, Kirk M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effect of Formulation and Application Time of Day on Detecting Dicamba in the Air under Field Conditions</atitle><jtitle>Weed science</jtitle><addtitle>Weed sci</addtitle><date>2013-10-01</date><risdate>2013</risdate><volume>61</volume><issue>4</issue><spage>586</spage><epage>593</epage><pages>586-593</pages><issn>0043-1745</issn><eissn>1550-2759</eissn><coden>WEESA6</coden><abstract>The development of dicamba-tolerant and other auxin-tolerant crops will enable the use of these effective herbicides in soybean and cotton at application timings such as at planting or over-the-top that are not currently possible. This research examined the effect of various factors on detection of postapplication amounts of dicamba in the air under field conditions by coupling a sample collection system with advanced chemical analysis of those samples. The quantity of dimethylamine salt of dicamba that was detected within 48 hr after application was two times greater (P < 0.05) than the quantity of diglycoamine salt formulation based on field studies in 2009. Regardless of application timing, the amount of detected dicamba was greatest during the 0 to 12 hr time period after application. However, the total detected after 48 hr was less for evening applications (5 micrograms [µg]) compared with midday (17 µg) or morning (14 µg) applications based on 2010 field trials. Average ambient air temperature (and other weather variables) correlated with higher detection levels of dicamba in the air in the field. Nomenclature: Dicamba, soybean, Glycine max (L.) Merr.</abstract><cop>810 East 10th Street, Lawrence, KS 66044-8897</cop><pub>Weed Science Society of America</pub><doi>10.1614/WS-D-12-00178.1</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0043-1745 |
ispartof | Weed science, 2013-10, Vol.61 (4), p.586-593 |
issn | 0043-1745 1550-2759 |
language | eng |
recordid | cdi_proquest_journals_1459396696 |
source | JSTOR Archival Journals and Primary Sources Collection; Cambridge University Press |
subjects | air Air sampling Air temperature Ambient temperature application timing Biological and medical sciences Chemical analysis Chemical control cotton crops Dicamba dimethylamine drift Fertilizer application timing field experimentation Fundamental and applied biological sciences. Psychology Glycine max Herbicides off-site movement Parasitic plants. Weeds Phytopathology. Animal pests. Plant and forest protection planting Plants Relative humidity Salts SOIL, AIR, AND WATER Soybeans stewardship Studies Temperature Vapors Volatility Weather weed science Weeds |
title | Effect of Formulation and Application Time of Day on Detecting Dicamba in the Air under Field Conditions |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T09%3A17%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effect%20of%20Formulation%20and%20Application%20Time%20of%20Day%20on%20Detecting%20Dicamba%20in%20the%20Air%20under%20Field%20Conditions&rft.jtitle=Weed%20science&rft.au=Mueller,%20Thomas%20C.&rft.date=2013-10-01&rft.volume=61&rft.issue=4&rft.spage=586&rft.epage=593&rft.pages=586-593&rft.issn=0043-1745&rft.eissn=1550-2759&rft.coden=WEESA6&rft_id=info:doi/10.1614/WS-D-12-00178.1&rft_dat=%3Cjstor_proqu%3E43699832%3C/jstor_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-b425t-c8349c60adbef11b4b09dc87577615efd8e56ffe9aa0f10cb1a33f92d3c65a573%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1459396696&rft_id=info:pmid/&rft_cupid=10_1614_WS_D_12_00178_1&rft_jstor_id=43699832&rfr_iscdi=true |