Loading…

COMPARISON OF THE CHARACTERISTICS OF ARTIFICIAL GINSENG BED SOILS IN RELATION TO THE INCIDENCE OF GINSENG RED SKIN DISEASE

Red skin disease seriously limits the production and quality of Panax ginseng (ginseng) in the Changbai Mountains of Northeast China, which is the main origin of ginseng. To cultivate ginseng, the albic and humus horizons of albic luvisols are artificially mixed to produce ginseng bed soils. To clar...

Full description

Saved in:
Bibliographic Details
Published in:Experimental agriculture 2014-01, Vol.50 (1), p.59-71
Main Authors: LIU, XING, YANG, ZHENMING, GAO, LINGLING, XIANG, WUYAN, ZHANG, BO, XIE, ZHONGLEI, YOU, JIANGFENG
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Red skin disease seriously limits the production and quality of Panax ginseng (ginseng) in the Changbai Mountains of Northeast China, which is the main origin of ginseng. To cultivate ginseng, the albic and humus horizons of albic luvisols are artificially mixed to produce ginseng bed soils. To clarify the relationship between red skin disease and soil characteristics, red skin disease indices were calculated from six plots located on a ginseng farm. Ginseng roots were analysed for aluminium (Al) content. Soils from the ginseng beds were sampled at three depths for the evaluation of physico-chemical parameters. Al fractionation from the soil solid fraction was analysed using atomic absorption spectrophotometry. Ginseng plants exhibiting larger red skin areas accumulated higher concentrations of Al in the epidermis and in the fibrous roots. Ginseng bed soils in the six plots were acidic with pHH2O values ranging from 4.0 to 5.0. Plots exhibiting higher red skin disease indices also had higher bulk densities, moisture contents and nitrate concentrations. They also contained higher concentrations of exchangeable Al, NaOH-extracted Al and ammonium oxalate-oxalic-extracted Al in the bed soils. The Al saturation and molar ratio of base cations to Al were above 20% and below 10, respectively, in the two plots with the highest disease indices. Compact soils with higher moisture, nitrate concentrations and active Al species may increase the incidence of ginseng red skin disease.
ISSN:0014-4797
1469-4441
1469-4441
DOI:10.1017/S0014479713000367