Loading…

Fourier Analysis of the Aggregation Based Algebraic Multigrid for Stochastic Matrices

We introduce new theoretical results on the convergence of the algebraic multigrid methods for obtaining stationary probability distribution vectors of stochastic matrices. We focus on sparse and nonsymmetric stochastic matrices. Our approach is based on the Fourier transform of the error propagatio...

Full description

Saved in:
Bibliographic Details
Published in:SIAM journal on matrix analysis and applications 2013-01, Vol.34 (4), p.1596-1610
Main Author: Pultarova, I
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c257t-b9546677efc714653485703624a750ba4203616450bf81951677a1ec90decc493
cites cdi_FETCH-LOGICAL-c257t-b9546677efc714653485703624a750ba4203616450bf81951677a1ec90decc493
container_end_page 1610
container_issue 4
container_start_page 1596
container_title SIAM journal on matrix analysis and applications
container_volume 34
creator Pultarova, I
description We introduce new theoretical results on the convergence of the algebraic multigrid methods for obtaining stationary probability distribution vectors of stochastic matrices. We focus on sparse and nonsymmetric stochastic matrices. Our approach is based on the Fourier transform of the error propagation operator. For some special classes of stochastic matrices it allows one to find the optimal parameters of the algorithm and to estimate the rate of convergence. Examples related to the computation of stable gene profiles are presented. [PUBLICATION ABSTRACT]
doi_str_mv 10.1137/130913821
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1465006961</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3146421791</sourcerecordid><originalsourceid>FETCH-LOGICAL-c257t-b9546677efc714653485703624a750ba4203616450bf81951677a1ec90decc493</originalsourceid><addsrcrecordid>eNo9UMtOwzAQtBBIhMKBP7DEiUPAG7_iY6h4SUUcgHPkOE7qKtTFdg_9exwVcdpZ7Wh2ZhC6BnIHQOU9UKKA1hWcoAKI4qUEUZ2igtQZM6nqc3QR44YQEExBgb6e_D44G3Cz1dMhuoj9gNPa4mYcgx11cn6LH3S0PW6m0XZBO4Pf9lNyY3A9HnzAH8mbtY5pPugUnLHxEp0Neor26m8u8p_Hz-VLuXp_fl02q9JUXKayU5wJIaUdjAQmOGU1l4SKimnJSadZlZdsNOOhBsUhczVYo0hvjWGKLtDNUXcX_M_extRucpycJLazHiFCCcis2yPLBB9jsEO7C-5bh0MLpJ1ba_9bo78EfVyT</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1465006961</pqid></control><display><type>article</type><title>Fourier Analysis of the Aggregation Based Algebraic Multigrid for Stochastic Matrices</title><source>ABI/INFORM global</source><source>LOCUS - SIAM's Online Journal Archive</source><creator>Pultarova, I</creator><creatorcontrib>Pultarova, I</creatorcontrib><description>We introduce new theoretical results on the convergence of the algebraic multigrid methods for obtaining stationary probability distribution vectors of stochastic matrices. We focus on sparse and nonsymmetric stochastic matrices. Our approach is based on the Fourier transform of the error propagation operator. For some special classes of stochastic matrices it allows one to find the optimal parameters of the algorithm and to estimate the rate of convergence. Examples related to the computation of stable gene profiles are presented. [PUBLICATION ABSTRACT]</description><identifier>ISSN: 0895-4798</identifier><identifier>EISSN: 1095-7162</identifier><identifier>DOI: 10.1137/130913821</identifier><language>eng</language><publisher>Philadelphia: Society for Industrial and Applied Mathematics</publisher><subject>Algebra ; Applied mathematics ; Fourier analysis ; Fourier transforms ; Methods ; Probability distribution ; Propagation</subject><ispartof>SIAM journal on matrix analysis and applications, 2013-01, Vol.34 (4), p.1596-1610</ispartof><rights>2013, Society for Industrial and Applied Mathematics</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c257t-b9546677efc714653485703624a750ba4203616450bf81951677a1ec90decc493</citedby><cites>FETCH-LOGICAL-c257t-b9546677efc714653485703624a750ba4203616450bf81951677a1ec90decc493</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/1465006961?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,776,780,3172,11667,27901,27902,36037,44339</link.rule.ids></links><search><creatorcontrib>Pultarova, I</creatorcontrib><title>Fourier Analysis of the Aggregation Based Algebraic Multigrid for Stochastic Matrices</title><title>SIAM journal on matrix analysis and applications</title><description>We introduce new theoretical results on the convergence of the algebraic multigrid methods for obtaining stationary probability distribution vectors of stochastic matrices. We focus on sparse and nonsymmetric stochastic matrices. Our approach is based on the Fourier transform of the error propagation operator. For some special classes of stochastic matrices it allows one to find the optimal parameters of the algorithm and to estimate the rate of convergence. Examples related to the computation of stable gene profiles are presented. [PUBLICATION ABSTRACT]</description><subject>Algebra</subject><subject>Applied mathematics</subject><subject>Fourier analysis</subject><subject>Fourier transforms</subject><subject>Methods</subject><subject>Probability distribution</subject><subject>Propagation</subject><issn>0895-4798</issn><issn>1095-7162</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>M0C</sourceid><recordid>eNo9UMtOwzAQtBBIhMKBP7DEiUPAG7_iY6h4SUUcgHPkOE7qKtTFdg_9exwVcdpZ7Wh2ZhC6BnIHQOU9UKKA1hWcoAKI4qUEUZ2igtQZM6nqc3QR44YQEExBgb6e_D44G3Cz1dMhuoj9gNPa4mYcgx11cn6LH3S0PW6m0XZBO4Pf9lNyY3A9HnzAH8mbtY5pPugUnLHxEp0Neor26m8u8p_Hz-VLuXp_fl02q9JUXKayU5wJIaUdjAQmOGU1l4SKimnJSadZlZdsNOOhBsUhczVYo0hvjWGKLtDNUXcX_M_extRucpycJLazHiFCCcis2yPLBB9jsEO7C-5bh0MLpJ1ba_9bo78EfVyT</recordid><startdate>20130101</startdate><enddate>20130101</enddate><creator>Pultarova, I</creator><general>Society for Industrial and Applied Mathematics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X2</scope><scope>7XB</scope><scope>87Z</scope><scope>88A</scope><scope>88F</scope><scope>88I</scope><scope>88K</scope><scope>8AL</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KB.</scope><scope>L.-</scope><scope>L6V</scope><scope>LK8</scope><scope>M0C</scope><scope>M0K</scope><scope>M0N</scope><scope>M1Q</scope><scope>M2O</scope><scope>M2P</scope><scope>M2T</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope></search><sort><creationdate>20130101</creationdate><title>Fourier Analysis of the Aggregation Based Algebraic Multigrid for Stochastic Matrices</title><author>Pultarova, I</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c257t-b9546677efc714653485703624a750ba4203616450bf81951677a1ec90decc493</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Algebra</topic><topic>Applied mathematics</topic><topic>Fourier analysis</topic><topic>Fourier transforms</topic><topic>Methods</topic><topic>Probability distribution</topic><topic>Propagation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pultarova, I</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest_ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Telecommunications (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>Materials Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>Biological Sciences</collection><collection>ABI/INFORM global</collection><collection>Agriculture Science Database</collection><collection>Computing Database</collection><collection>Military Database</collection><collection>ProQuest research library</collection><collection>Science Database</collection><collection>Telecommunications Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>One Business (ProQuest)</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><jtitle>SIAM journal on matrix analysis and applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pultarova, I</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fourier Analysis of the Aggregation Based Algebraic Multigrid for Stochastic Matrices</atitle><jtitle>SIAM journal on matrix analysis and applications</jtitle><date>2013-01-01</date><risdate>2013</risdate><volume>34</volume><issue>4</issue><spage>1596</spage><epage>1610</epage><pages>1596-1610</pages><issn>0895-4798</issn><eissn>1095-7162</eissn><abstract>We introduce new theoretical results on the convergence of the algebraic multigrid methods for obtaining stationary probability distribution vectors of stochastic matrices. We focus on sparse and nonsymmetric stochastic matrices. Our approach is based on the Fourier transform of the error propagation operator. For some special classes of stochastic matrices it allows one to find the optimal parameters of the algorithm and to estimate the rate of convergence. Examples related to the computation of stable gene profiles are presented. [PUBLICATION ABSTRACT]</abstract><cop>Philadelphia</cop><pub>Society for Industrial and Applied Mathematics</pub><doi>10.1137/130913821</doi><tpages>15</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0895-4798
ispartof SIAM journal on matrix analysis and applications, 2013-01, Vol.34 (4), p.1596-1610
issn 0895-4798
1095-7162
language eng
recordid cdi_proquest_journals_1465006961
source ABI/INFORM global; LOCUS - SIAM's Online Journal Archive
subjects Algebra
Applied mathematics
Fourier analysis
Fourier transforms
Methods
Probability distribution
Propagation
title Fourier Analysis of the Aggregation Based Algebraic Multigrid for Stochastic Matrices
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T02%3A40%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fourier%20Analysis%20of%20the%20Aggregation%20Based%20Algebraic%20Multigrid%20for%20Stochastic%20Matrices&rft.jtitle=SIAM%20journal%20on%20matrix%20analysis%20and%20applications&rft.au=Pultarova,%20I&rft.date=2013-01-01&rft.volume=34&rft.issue=4&rft.spage=1596&rft.epage=1610&rft.pages=1596-1610&rft.issn=0895-4798&rft.eissn=1095-7162&rft_id=info:doi/10.1137/130913821&rft_dat=%3Cproquest_cross%3E3146421791%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c257t-b9546677efc714653485703624a750ba4203616450bf81951677a1ec90decc493%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1465006961&rft_id=info:pmid/&rfr_iscdi=true