Loading…

Mixtures of autoregressive-autoregressive conditionally heteroscedastic models: semi-parametric approach

We propose data generating structures which can be represented as a mixture of autoregressive-autoregressive conditionally heteroscedastic models. The switching between the states is governed by a hidden Markov chain. We investigate semi-parametric estimators for estimating the functions based on th...

Full description

Saved in:
Bibliographic Details
Published in:Journal of applied statistics 2014-02, Vol.41 (2), p.275-293
Main Authors: Nademi, Arash, Farnoosh, Rahman
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c335t-83e8e065b30fa00082fc4df4ea2279261b24e3ee58a3c4108e17dde6e8a2037a3
cites cdi_FETCH-LOGICAL-c335t-83e8e065b30fa00082fc4df4ea2279261b24e3ee58a3c4108e17dde6e8a2037a3
container_end_page 293
container_issue 2
container_start_page 275
container_title Journal of applied statistics
container_volume 41
creator Nademi, Arash
Farnoosh, Rahman
description We propose data generating structures which can be represented as a mixture of autoregressive-autoregressive conditionally heteroscedastic models. The switching between the states is governed by a hidden Markov chain. We investigate semi-parametric estimators for estimating the functions based on the quasi-maximum likelihood approach and provide sufficient conditions for geometric ergodicity of the process. We also present an expectation-maximization algorithm for calculating the estimates numerically.
doi_str_mv 10.1080/02664763.2013.839129
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1465009719</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3146444531</sourcerecordid><originalsourceid>FETCH-LOGICAL-c335t-83e8e065b30fa00082fc4df4ea2279261b24e3ee58a3c4108e17dde6e8a2037a3</originalsourceid><addsrcrecordid>eNp9UMtOwzAQtBBIlMIfcIjEOcWPxEm4IFTxkoq4wNnaOhvqKomL7QD9exwFDlw4rWY1szszhJwzumC0pJeUS5kVUiw4ZWJRiorx6oDMmJA0pbngh2Q2UtKRc0xOvN9SSkuWixnZPJmvMDj0iW0SGIJ1-BaRNx-Y_oWJtn1tgrE9tO0-2WBAZ73GGnwwOulsja2_Sjx2Jt2Bgw6Di3vY7ZwFvTklRw20Hs9-5py83t2-LB_S1fP94_JmlWoh8pCWAkukMl8L2sDokjc6q5sMgfOi4pKteYYCMS9B6CymR1bUNUosgVNRgJiTi-lufPs-oA9qawcXPXvFMplTWhWsiqxsYumYwTts1M6ZDtxeMarGTtVvp2rsVE2dRtn1JDN9Y10Hn9a1tQqwb61rHPTaeCX-vfAN71WALg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1465009719</pqid></control><display><type>article</type><title>Mixtures of autoregressive-autoregressive conditionally heteroscedastic models: semi-parametric approach</title><source>EBSCOhost Business Source Ultimate</source><source>Taylor and Francis:Jisc Collections:Taylor and Francis Read and Publish Agreement 2024-2025:Science and Technology Collection (Reading list)</source><creator>Nademi, Arash ; Farnoosh, Rahman</creator><creatorcontrib>Nademi, Arash ; Farnoosh, Rahman</creatorcontrib><description>We propose data generating structures which can be represented as a mixture of autoregressive-autoregressive conditionally heteroscedastic models. The switching between the states is governed by a hidden Markov chain. We investigate semi-parametric estimators for estimating the functions based on the quasi-maximum likelihood approach and provide sufficient conditions for geometric ergodicity of the process. We also present an expectation-maximization algorithm for calculating the estimates numerically.</description><identifier>ISSN: 0266-4763</identifier><identifier>EISSN: 1360-0532</identifier><identifier>DOI: 10.1080/02664763.2013.839129</identifier><language>eng</language><publisher>Abingdon: Taylor &amp; Francis</publisher><subject>EM algorithm ; Estimating techniques ; geometric ergodicity ; hidden variables ; Markov analysis ; Mathematical models ; Maximum likelihood method ; mixture models ; Parameter estimation ; Regression analysis ; semi-parametric autoregression ; Studies</subject><ispartof>Journal of applied statistics, 2014-02, Vol.41 (2), p.275-293</ispartof><rights>2013 Taylor &amp; Francis 2013</rights><rights>Copyright Taylor &amp; Francis Ltd. 2014</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c335t-83e8e065b30fa00082fc4df4ea2279261b24e3ee58a3c4108e17dde6e8a2037a3</citedby><cites>FETCH-LOGICAL-c335t-83e8e065b30fa00082fc4df4ea2279261b24e3ee58a3c4108e17dde6e8a2037a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Nademi, Arash</creatorcontrib><creatorcontrib>Farnoosh, Rahman</creatorcontrib><title>Mixtures of autoregressive-autoregressive conditionally heteroscedastic models: semi-parametric approach</title><title>Journal of applied statistics</title><description>We propose data generating structures which can be represented as a mixture of autoregressive-autoregressive conditionally heteroscedastic models. The switching between the states is governed by a hidden Markov chain. We investigate semi-parametric estimators for estimating the functions based on the quasi-maximum likelihood approach and provide sufficient conditions for geometric ergodicity of the process. We also present an expectation-maximization algorithm for calculating the estimates numerically.</description><subject>EM algorithm</subject><subject>Estimating techniques</subject><subject>geometric ergodicity</subject><subject>hidden variables</subject><subject>Markov analysis</subject><subject>Mathematical models</subject><subject>Maximum likelihood method</subject><subject>mixture models</subject><subject>Parameter estimation</subject><subject>Regression analysis</subject><subject>semi-parametric autoregression</subject><subject>Studies</subject><issn>0266-4763</issn><issn>1360-0532</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNp9UMtOwzAQtBBIlMIfcIjEOcWPxEm4IFTxkoq4wNnaOhvqKomL7QD9exwFDlw4rWY1szszhJwzumC0pJeUS5kVUiw4ZWJRiorx6oDMmJA0pbngh2Q2UtKRc0xOvN9SSkuWixnZPJmvMDj0iW0SGIJ1-BaRNx-Y_oWJtn1tgrE9tO0-2WBAZ73GGnwwOulsja2_Sjx2Jt2Bgw6Di3vY7ZwFvTklRw20Hs9-5py83t2-LB_S1fP94_JmlWoh8pCWAkukMl8L2sDokjc6q5sMgfOi4pKteYYCMS9B6CymR1bUNUosgVNRgJiTi-lufPs-oA9qawcXPXvFMplTWhWsiqxsYumYwTts1M6ZDtxeMarGTtVvp2rsVE2dRtn1JDN9Y10Hn9a1tQqwb61rHPTaeCX-vfAN71WALg</recordid><startdate>20140201</startdate><enddate>20140201</enddate><creator>Nademi, Arash</creator><creator>Farnoosh, Rahman</creator><general>Taylor &amp; Francis</general><general>Taylor &amp; Francis Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>H8D</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20140201</creationdate><title>Mixtures of autoregressive-autoregressive conditionally heteroscedastic models: semi-parametric approach</title><author>Nademi, Arash ; Farnoosh, Rahman</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c335t-83e8e065b30fa00082fc4df4ea2279261b24e3ee58a3c4108e17dde6e8a2037a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>EM algorithm</topic><topic>Estimating techniques</topic><topic>geometric ergodicity</topic><topic>hidden variables</topic><topic>Markov analysis</topic><topic>Mathematical models</topic><topic>Maximum likelihood method</topic><topic>mixture models</topic><topic>Parameter estimation</topic><topic>Regression analysis</topic><topic>semi-parametric autoregression</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nademi, Arash</creatorcontrib><creatorcontrib>Farnoosh, Rahman</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of applied statistics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nademi, Arash</au><au>Farnoosh, Rahman</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mixtures of autoregressive-autoregressive conditionally heteroscedastic models: semi-parametric approach</atitle><jtitle>Journal of applied statistics</jtitle><date>2014-02-01</date><risdate>2014</risdate><volume>41</volume><issue>2</issue><spage>275</spage><epage>293</epage><pages>275-293</pages><issn>0266-4763</issn><eissn>1360-0532</eissn><abstract>We propose data generating structures which can be represented as a mixture of autoregressive-autoregressive conditionally heteroscedastic models. The switching between the states is governed by a hidden Markov chain. We investigate semi-parametric estimators for estimating the functions based on the quasi-maximum likelihood approach and provide sufficient conditions for geometric ergodicity of the process. We also present an expectation-maximization algorithm for calculating the estimates numerically.</abstract><cop>Abingdon</cop><pub>Taylor &amp; Francis</pub><doi>10.1080/02664763.2013.839129</doi><tpages>19</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0266-4763
ispartof Journal of applied statistics, 2014-02, Vol.41 (2), p.275-293
issn 0266-4763
1360-0532
language eng
recordid cdi_proquest_journals_1465009719
source EBSCOhost Business Source Ultimate; Taylor and Francis:Jisc Collections:Taylor and Francis Read and Publish Agreement 2024-2025:Science and Technology Collection (Reading list)
subjects EM algorithm
Estimating techniques
geometric ergodicity
hidden variables
Markov analysis
Mathematical models
Maximum likelihood method
mixture models
Parameter estimation
Regression analysis
semi-parametric autoregression
Studies
title Mixtures of autoregressive-autoregressive conditionally heteroscedastic models: semi-parametric approach
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T18%3A59%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mixtures%20of%20autoregressive-autoregressive%20conditionally%20heteroscedastic%20models:%20semi-parametric%20approach&rft.jtitle=Journal%20of%20applied%20statistics&rft.au=Nademi,%20Arash&rft.date=2014-02-01&rft.volume=41&rft.issue=2&rft.spage=275&rft.epage=293&rft.pages=275-293&rft.issn=0266-4763&rft.eissn=1360-0532&rft_id=info:doi/10.1080/02664763.2013.839129&rft_dat=%3Cproquest_cross%3E3146444531%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c335t-83e8e065b30fa00082fc4df4ea2279261b24e3ee58a3c4108e17dde6e8a2037a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1465009719&rft_id=info:pmid/&rfr_iscdi=true