Loading…
Optimizing Hopfield Neural Network for Spectral Mixture Unmixing on GPU Platform
The Hopfield neural network (HNN) has been demonstrated to be an effective tool for the spectral mixture unmixing of hyperspectral images. However, it is extremely time consuming for such per-pixel algorithm to be utilized in real-world applications. In this letter, the implementation of a multichan...
Saved in:
Published in: | IEEE geoscience and remote sensing letters 2014-04, Vol.11 (4), p.818-822 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c293t-edf038c879758deaf838588567d0b708314ce24256701bc99d5d96787c8dd6e83 |
---|---|
cites | cdi_FETCH-LOGICAL-c293t-edf038c879758deaf838588567d0b708314ce24256701bc99d5d96787c8dd6e83 |
container_end_page | 822 |
container_issue | 4 |
container_start_page | 818 |
container_title | IEEE geoscience and remote sensing letters |
container_volume | 11 |
creator | Mei, Shaohui He, Mingyi Shen, Zhiming |
description | The Hopfield neural network (HNN) has been demonstrated to be an effective tool for the spectral mixture unmixing of hyperspectral images. However, it is extremely time consuming for such per-pixel algorithm to be utilized in real-world applications. In this letter, the implementation of a multichannel structure of HNN (named as MHNN) on a graphics processing unit (GPU) platform is proposed. According to the unmixing procedure of MHNN, three levels of parallelism, including thread, block, and stream, are designed to explore the peak computing capacity of a GPU device. In addition, constant and texture memories are utilized to further improve its computational performance. Experiments on both synthetic and real hyperspectral images demonstrated that the proposed GPU-based implementation works on the peak computing ability of a GPU device and obtains several hundred times of acceleration versus the CPU-based implementation while its unmixing performance remains unchanged. |
doi_str_mv | 10.1109/LGRS.2013.2279331 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1465894319</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6623088</ieee_id><sourcerecordid>3149475621</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-edf038c879758deaf838588567d0b708314ce24256701bc99d5d96787c8dd6e83</originalsourceid><addsrcrecordid>eNo9kF1LwzAUhoMoOKc_QLwJeN2Zj6Y5uZShmzDdcA68C12TSmbb1LTF6a-3ZcOr93B43nPgQeiakgmlRN0tZq_rCSOUTxiTinN6gkZUCIiIkPR0mGMRCQXv5-iiaXaEsBhAjtBqWbeudL-u-sBzX-fOFga_2C6kRR_ttw-fOPcBr2ubtcPy2e3bLli8qUq3H1q-wrPVBq-KtO3B8hKd5WnR2KtjjtHm8eFtOo8Wy9nT9H4RZUzxNrImJxwykEoKMDbNgYMAEIk0ZCsJcBpnlsWsXxC6zZQywqhEgszAmMQCH6Pbw906-K_ONq3e-S5U_UtN40SAijlVPUUPVBZ80wSb6zq4Mg0_mhI9iNODOD2I00dxfefm0HHW2n8-SRgnAPwPCSVpCA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1465894319</pqid></control><display><type>article</type><title>Optimizing Hopfield Neural Network for Spectral Mixture Unmixing on GPU Platform</title><source>IEEE Xplore (Online service)</source><creator>Mei, Shaohui ; He, Mingyi ; Shen, Zhiming</creator><creatorcontrib>Mei, Shaohui ; He, Mingyi ; Shen, Zhiming</creatorcontrib><description>The Hopfield neural network (HNN) has been demonstrated to be an effective tool for the spectral mixture unmixing of hyperspectral images. However, it is extremely time consuming for such per-pixel algorithm to be utilized in real-world applications. In this letter, the implementation of a multichannel structure of HNN (named as MHNN) on a graphics processing unit (GPU) platform is proposed. According to the unmixing procedure of MHNN, three levels of parallelism, including thread, block, and stream, are designed to explore the peak computing capacity of a GPU device. In addition, constant and texture memories are utilized to further improve its computational performance. Experiments on both synthetic and real hyperspectral images demonstrated that the proposed GPU-based implementation works on the peak computing ability of a GPU device and obtains several hundred times of acceleration versus the CPU-based implementation while its unmixing performance remains unchanged.</description><identifier>ISSN: 1545-598X</identifier><identifier>EISSN: 1558-0571</identifier><identifier>DOI: 10.1109/LGRS.2013.2279331</identifier><identifier>CODEN: IGRSBY</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Acceleration ; Graphics processing unit (GPU) ; Graphics processing units ; Hopfield neural network (HNN) ; Hyperspectral imaging ; Instruction sets ; Neural networks ; Parallel processing ; spectral mixture unmixing (SMU)</subject><ispartof>IEEE geoscience and remote sensing letters, 2014-04, Vol.11 (4), p.818-822</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Apr 2014</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-edf038c879758deaf838588567d0b708314ce24256701bc99d5d96787c8dd6e83</citedby><cites>FETCH-LOGICAL-c293t-edf038c879758deaf838588567d0b708314ce24256701bc99d5d96787c8dd6e83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6623088$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Mei, Shaohui</creatorcontrib><creatorcontrib>He, Mingyi</creatorcontrib><creatorcontrib>Shen, Zhiming</creatorcontrib><title>Optimizing Hopfield Neural Network for Spectral Mixture Unmixing on GPU Platform</title><title>IEEE geoscience and remote sensing letters</title><addtitle>LGRS</addtitle><description>The Hopfield neural network (HNN) has been demonstrated to be an effective tool for the spectral mixture unmixing of hyperspectral images. However, it is extremely time consuming for such per-pixel algorithm to be utilized in real-world applications. In this letter, the implementation of a multichannel structure of HNN (named as MHNN) on a graphics processing unit (GPU) platform is proposed. According to the unmixing procedure of MHNN, three levels of parallelism, including thread, block, and stream, are designed to explore the peak computing capacity of a GPU device. In addition, constant and texture memories are utilized to further improve its computational performance. Experiments on both synthetic and real hyperspectral images demonstrated that the proposed GPU-based implementation works on the peak computing ability of a GPU device and obtains several hundred times of acceleration versus the CPU-based implementation while its unmixing performance remains unchanged.</description><subject>Acceleration</subject><subject>Graphics processing unit (GPU)</subject><subject>Graphics processing units</subject><subject>Hopfield neural network (HNN)</subject><subject>Hyperspectral imaging</subject><subject>Instruction sets</subject><subject>Neural networks</subject><subject>Parallel processing</subject><subject>spectral mixture unmixing (SMU)</subject><issn>1545-598X</issn><issn>1558-0571</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNo9kF1LwzAUhoMoOKc_QLwJeN2Zj6Y5uZShmzDdcA68C12TSmbb1LTF6a-3ZcOr93B43nPgQeiakgmlRN0tZq_rCSOUTxiTinN6gkZUCIiIkPR0mGMRCQXv5-iiaXaEsBhAjtBqWbeudL-u-sBzX-fOFga_2C6kRR_ttw-fOPcBr2ubtcPy2e3bLli8qUq3H1q-wrPVBq-KtO3B8hKd5WnR2KtjjtHm8eFtOo8Wy9nT9H4RZUzxNrImJxwykEoKMDbNgYMAEIk0ZCsJcBpnlsWsXxC6zZQywqhEgszAmMQCH6Pbw906-K_ONq3e-S5U_UtN40SAijlVPUUPVBZ80wSb6zq4Mg0_mhI9iNODOD2I00dxfefm0HHW2n8-SRgnAPwPCSVpCA</recordid><startdate>201404</startdate><enddate>201404</enddate><creator>Mei, Shaohui</creator><creator>He, Mingyi</creator><creator>Shen, Zhiming</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TG</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>JQ2</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>201404</creationdate><title>Optimizing Hopfield Neural Network for Spectral Mixture Unmixing on GPU Platform</title><author>Mei, Shaohui ; He, Mingyi ; Shen, Zhiming</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-edf038c879758deaf838588567d0b708314ce24256701bc99d5d96787c8dd6e83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Acceleration</topic><topic>Graphics processing unit (GPU)</topic><topic>Graphics processing units</topic><topic>Hopfield neural network (HNN)</topic><topic>Hyperspectral imaging</topic><topic>Instruction sets</topic><topic>Neural networks</topic><topic>Parallel processing</topic><topic>spectral mixture unmixing (SMU)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mei, Shaohui</creatorcontrib><creatorcontrib>He, Mingyi</creatorcontrib><creatorcontrib>Shen, Zhiming</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>ProQuest Computer Science Collection</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE geoscience and remote sensing letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mei, Shaohui</au><au>He, Mingyi</au><au>Shen, Zhiming</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimizing Hopfield Neural Network for Spectral Mixture Unmixing on GPU Platform</atitle><jtitle>IEEE geoscience and remote sensing letters</jtitle><stitle>LGRS</stitle><date>2014-04</date><risdate>2014</risdate><volume>11</volume><issue>4</issue><spage>818</spage><epage>822</epage><pages>818-822</pages><issn>1545-598X</issn><eissn>1558-0571</eissn><coden>IGRSBY</coden><abstract>The Hopfield neural network (HNN) has been demonstrated to be an effective tool for the spectral mixture unmixing of hyperspectral images. However, it is extremely time consuming for such per-pixel algorithm to be utilized in real-world applications. In this letter, the implementation of a multichannel structure of HNN (named as MHNN) on a graphics processing unit (GPU) platform is proposed. According to the unmixing procedure of MHNN, three levels of parallelism, including thread, block, and stream, are designed to explore the peak computing capacity of a GPU device. In addition, constant and texture memories are utilized to further improve its computational performance. Experiments on both synthetic and real hyperspectral images demonstrated that the proposed GPU-based implementation works on the peak computing ability of a GPU device and obtains several hundred times of acceleration versus the CPU-based implementation while its unmixing performance remains unchanged.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/LGRS.2013.2279331</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1545-598X |
ispartof | IEEE geoscience and remote sensing letters, 2014-04, Vol.11 (4), p.818-822 |
issn | 1545-598X 1558-0571 |
language | eng |
recordid | cdi_proquest_journals_1465894319 |
source | IEEE Xplore (Online service) |
subjects | Acceleration Graphics processing unit (GPU) Graphics processing units Hopfield neural network (HNN) Hyperspectral imaging Instruction sets Neural networks Parallel processing spectral mixture unmixing (SMU) |
title | Optimizing Hopfield Neural Network for Spectral Mixture Unmixing on GPU Platform |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T15%3A16%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimizing%20Hopfield%20Neural%20Network%20for%20Spectral%20Mixture%20Unmixing%20on%20GPU%20Platform&rft.jtitle=IEEE%20geoscience%20and%20remote%20sensing%20letters&rft.au=Mei,%20Shaohui&rft.date=2014-04&rft.volume=11&rft.issue=4&rft.spage=818&rft.epage=822&rft.pages=818-822&rft.issn=1545-598X&rft.eissn=1558-0571&rft.coden=IGRSBY&rft_id=info:doi/10.1109/LGRS.2013.2279331&rft_dat=%3Cproquest_cross%3E3149475621%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c293t-edf038c879758deaf838588567d0b708314ce24256701bc99d5d96787c8dd6e83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1465894319&rft_id=info:pmid/&rft_ieee_id=6623088&rfr_iscdi=true |