Loading…

Optimizing Hopfield Neural Network for Spectral Mixture Unmixing on GPU Platform

The Hopfield neural network (HNN) has been demonstrated to be an effective tool for the spectral mixture unmixing of hyperspectral images. However, it is extremely time consuming for such per-pixel algorithm to be utilized in real-world applications. In this letter, the implementation of a multichan...

Full description

Saved in:
Bibliographic Details
Published in:IEEE geoscience and remote sensing letters 2014-04, Vol.11 (4), p.818-822
Main Authors: Mei, Shaohui, He, Mingyi, Shen, Zhiming
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c293t-edf038c879758deaf838588567d0b708314ce24256701bc99d5d96787c8dd6e83
cites cdi_FETCH-LOGICAL-c293t-edf038c879758deaf838588567d0b708314ce24256701bc99d5d96787c8dd6e83
container_end_page 822
container_issue 4
container_start_page 818
container_title IEEE geoscience and remote sensing letters
container_volume 11
creator Mei, Shaohui
He, Mingyi
Shen, Zhiming
description The Hopfield neural network (HNN) has been demonstrated to be an effective tool for the spectral mixture unmixing of hyperspectral images. However, it is extremely time consuming for such per-pixel algorithm to be utilized in real-world applications. In this letter, the implementation of a multichannel structure of HNN (named as MHNN) on a graphics processing unit (GPU) platform is proposed. According to the unmixing procedure of MHNN, three levels of parallelism, including thread, block, and stream, are designed to explore the peak computing capacity of a GPU device. In addition, constant and texture memories are utilized to further improve its computational performance. Experiments on both synthetic and real hyperspectral images demonstrated that the proposed GPU-based implementation works on the peak computing ability of a GPU device and obtains several hundred times of acceleration versus the CPU-based implementation while its unmixing performance remains unchanged.
doi_str_mv 10.1109/LGRS.2013.2279331
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1465894319</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6623088</ieee_id><sourcerecordid>3149475621</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-edf038c879758deaf838588567d0b708314ce24256701bc99d5d96787c8dd6e83</originalsourceid><addsrcrecordid>eNo9kF1LwzAUhoMoOKc_QLwJeN2Zj6Y5uZShmzDdcA68C12TSmbb1LTF6a-3ZcOr93B43nPgQeiakgmlRN0tZq_rCSOUTxiTinN6gkZUCIiIkPR0mGMRCQXv5-iiaXaEsBhAjtBqWbeudL-u-sBzX-fOFga_2C6kRR_ttw-fOPcBr2ubtcPy2e3bLli8qUq3H1q-wrPVBq-KtO3B8hKd5WnR2KtjjtHm8eFtOo8Wy9nT9H4RZUzxNrImJxwykEoKMDbNgYMAEIk0ZCsJcBpnlsWsXxC6zZQywqhEgszAmMQCH6Pbw906-K_ONq3e-S5U_UtN40SAijlVPUUPVBZ80wSb6zq4Mg0_mhI9iNODOD2I00dxfefm0HHW2n8-SRgnAPwPCSVpCA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1465894319</pqid></control><display><type>article</type><title>Optimizing Hopfield Neural Network for Spectral Mixture Unmixing on GPU Platform</title><source>IEEE Xplore (Online service)</source><creator>Mei, Shaohui ; He, Mingyi ; Shen, Zhiming</creator><creatorcontrib>Mei, Shaohui ; He, Mingyi ; Shen, Zhiming</creatorcontrib><description>The Hopfield neural network (HNN) has been demonstrated to be an effective tool for the spectral mixture unmixing of hyperspectral images. However, it is extremely time consuming for such per-pixel algorithm to be utilized in real-world applications. In this letter, the implementation of a multichannel structure of HNN (named as MHNN) on a graphics processing unit (GPU) platform is proposed. According to the unmixing procedure of MHNN, three levels of parallelism, including thread, block, and stream, are designed to explore the peak computing capacity of a GPU device. In addition, constant and texture memories are utilized to further improve its computational performance. Experiments on both synthetic and real hyperspectral images demonstrated that the proposed GPU-based implementation works on the peak computing ability of a GPU device and obtains several hundred times of acceleration versus the CPU-based implementation while its unmixing performance remains unchanged.</description><identifier>ISSN: 1545-598X</identifier><identifier>EISSN: 1558-0571</identifier><identifier>DOI: 10.1109/LGRS.2013.2279331</identifier><identifier>CODEN: IGRSBY</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Acceleration ; Graphics processing unit (GPU) ; Graphics processing units ; Hopfield neural network (HNN) ; Hyperspectral imaging ; Instruction sets ; Neural networks ; Parallel processing ; spectral mixture unmixing (SMU)</subject><ispartof>IEEE geoscience and remote sensing letters, 2014-04, Vol.11 (4), p.818-822</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Apr 2014</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-edf038c879758deaf838588567d0b708314ce24256701bc99d5d96787c8dd6e83</citedby><cites>FETCH-LOGICAL-c293t-edf038c879758deaf838588567d0b708314ce24256701bc99d5d96787c8dd6e83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6623088$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Mei, Shaohui</creatorcontrib><creatorcontrib>He, Mingyi</creatorcontrib><creatorcontrib>Shen, Zhiming</creatorcontrib><title>Optimizing Hopfield Neural Network for Spectral Mixture Unmixing on GPU Platform</title><title>IEEE geoscience and remote sensing letters</title><addtitle>LGRS</addtitle><description>The Hopfield neural network (HNN) has been demonstrated to be an effective tool for the spectral mixture unmixing of hyperspectral images. However, it is extremely time consuming for such per-pixel algorithm to be utilized in real-world applications. In this letter, the implementation of a multichannel structure of HNN (named as MHNN) on a graphics processing unit (GPU) platform is proposed. According to the unmixing procedure of MHNN, three levels of parallelism, including thread, block, and stream, are designed to explore the peak computing capacity of a GPU device. In addition, constant and texture memories are utilized to further improve its computational performance. Experiments on both synthetic and real hyperspectral images demonstrated that the proposed GPU-based implementation works on the peak computing ability of a GPU device and obtains several hundred times of acceleration versus the CPU-based implementation while its unmixing performance remains unchanged.</description><subject>Acceleration</subject><subject>Graphics processing unit (GPU)</subject><subject>Graphics processing units</subject><subject>Hopfield neural network (HNN)</subject><subject>Hyperspectral imaging</subject><subject>Instruction sets</subject><subject>Neural networks</subject><subject>Parallel processing</subject><subject>spectral mixture unmixing (SMU)</subject><issn>1545-598X</issn><issn>1558-0571</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNo9kF1LwzAUhoMoOKc_QLwJeN2Zj6Y5uZShmzDdcA68C12TSmbb1LTF6a-3ZcOr93B43nPgQeiakgmlRN0tZq_rCSOUTxiTinN6gkZUCIiIkPR0mGMRCQXv5-iiaXaEsBhAjtBqWbeudL-u-sBzX-fOFga_2C6kRR_ttw-fOPcBr2ubtcPy2e3bLli8qUq3H1q-wrPVBq-KtO3B8hKd5WnR2KtjjtHm8eFtOo8Wy9nT9H4RZUzxNrImJxwykEoKMDbNgYMAEIk0ZCsJcBpnlsWsXxC6zZQywqhEgszAmMQCH6Pbw906-K_ONq3e-S5U_UtN40SAijlVPUUPVBZ80wSb6zq4Mg0_mhI9iNODOD2I00dxfefm0HHW2n8-SRgnAPwPCSVpCA</recordid><startdate>201404</startdate><enddate>201404</enddate><creator>Mei, Shaohui</creator><creator>He, Mingyi</creator><creator>Shen, Zhiming</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TG</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>JQ2</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>201404</creationdate><title>Optimizing Hopfield Neural Network for Spectral Mixture Unmixing on GPU Platform</title><author>Mei, Shaohui ; He, Mingyi ; Shen, Zhiming</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-edf038c879758deaf838588567d0b708314ce24256701bc99d5d96787c8dd6e83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Acceleration</topic><topic>Graphics processing unit (GPU)</topic><topic>Graphics processing units</topic><topic>Hopfield neural network (HNN)</topic><topic>Hyperspectral imaging</topic><topic>Instruction sets</topic><topic>Neural networks</topic><topic>Parallel processing</topic><topic>spectral mixture unmixing (SMU)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mei, Shaohui</creatorcontrib><creatorcontrib>He, Mingyi</creatorcontrib><creatorcontrib>Shen, Zhiming</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>ProQuest Computer Science Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE geoscience and remote sensing letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mei, Shaohui</au><au>He, Mingyi</au><au>Shen, Zhiming</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimizing Hopfield Neural Network for Spectral Mixture Unmixing on GPU Platform</atitle><jtitle>IEEE geoscience and remote sensing letters</jtitle><stitle>LGRS</stitle><date>2014-04</date><risdate>2014</risdate><volume>11</volume><issue>4</issue><spage>818</spage><epage>822</epage><pages>818-822</pages><issn>1545-598X</issn><eissn>1558-0571</eissn><coden>IGRSBY</coden><abstract>The Hopfield neural network (HNN) has been demonstrated to be an effective tool for the spectral mixture unmixing of hyperspectral images. However, it is extremely time consuming for such per-pixel algorithm to be utilized in real-world applications. In this letter, the implementation of a multichannel structure of HNN (named as MHNN) on a graphics processing unit (GPU) platform is proposed. According to the unmixing procedure of MHNN, three levels of parallelism, including thread, block, and stream, are designed to explore the peak computing capacity of a GPU device. In addition, constant and texture memories are utilized to further improve its computational performance. Experiments on both synthetic and real hyperspectral images demonstrated that the proposed GPU-based implementation works on the peak computing ability of a GPU device and obtains several hundred times of acceleration versus the CPU-based implementation while its unmixing performance remains unchanged.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/LGRS.2013.2279331</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1545-598X
ispartof IEEE geoscience and remote sensing letters, 2014-04, Vol.11 (4), p.818-822
issn 1545-598X
1558-0571
language eng
recordid cdi_proquest_journals_1465894319
source IEEE Xplore (Online service)
subjects Acceleration
Graphics processing unit (GPU)
Graphics processing units
Hopfield neural network (HNN)
Hyperspectral imaging
Instruction sets
Neural networks
Parallel processing
spectral mixture unmixing (SMU)
title Optimizing Hopfield Neural Network for Spectral Mixture Unmixing on GPU Platform
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T15%3A16%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimizing%20Hopfield%20Neural%20Network%20for%20Spectral%20Mixture%20Unmixing%20on%20GPU%20Platform&rft.jtitle=IEEE%20geoscience%20and%20remote%20sensing%20letters&rft.au=Mei,%20Shaohui&rft.date=2014-04&rft.volume=11&rft.issue=4&rft.spage=818&rft.epage=822&rft.pages=818-822&rft.issn=1545-598X&rft.eissn=1558-0571&rft.coden=IGRSBY&rft_id=info:doi/10.1109/LGRS.2013.2279331&rft_dat=%3Cproquest_cross%3E3149475621%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c293t-edf038c879758deaf838588567d0b708314ce24256701bc99d5d96787c8dd6e83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1465894319&rft_id=info:pmid/&rft_ieee_id=6623088&rfr_iscdi=true