Loading…

A simple test for random effects in regression models

Testing that random effects are zero is difficult, because the null hypothesis restricts the corresponding variance parameter to the edge of the feasible parameter space. In the context of generalized linear mixed models, this paper exploits the link between random effects and penalized regression t...

Full description

Saved in:
Bibliographic Details
Published in:Biometrika 2013-12, Vol.100 (4), p.1005-1010
Main Author: Wood, Simon N.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c326t-3bfdd56b3957732580ceb1cc1ccd927e1254fa9aeebb8ebb9e54831d4c8805753
cites cdi_FETCH-LOGICAL-c326t-3bfdd56b3957732580ceb1cc1ccd927e1254fa9aeebb8ebb9e54831d4c8805753
container_end_page 1010
container_issue 4
container_start_page 1005
container_title Biometrika
container_volume 100
creator Wood, Simon N.
description Testing that random effects are zero is difficult, because the null hypothesis restricts the corresponding variance parameter to the edge of the feasible parameter space. In the context of generalized linear mixed models, this paper exploits the link between random effects and penalized regression to develop a simple test for a zero effect. The idea is to treat the variance components not being tested as fixed at their estimates and then to express the likelihood ratio as a readily computed quadratic form in the predicted values of the random effects. Under the null hypothesis this has the distribution of a weighted sum of squares of independent standard normal random variables. The test can be used with generalized linear mixed models, including those estimated by penalized quasilikelihood.
doi_str_mv 10.1093/biomet/ast038
format article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_1466251163</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>43305585</jstor_id><sourcerecordid>43305585</sourcerecordid><originalsourceid>FETCH-LOGICAL-c326t-3bfdd56b3957732580ceb1cc1ccd927e1254fa9aeebb8ebb9e54831d4c8805753</originalsourceid><addsrcrecordid>eNo9kEtLAzEQgIMoWKtHj0LA89pkJ5PNHkvRKhS86DnsYyJbupuapAf_vSkrwgzDwMc8PsbupXiSooZVO_iR0qqJSYC5YAuptCoApbhkCyGELkApdc1uYtyfW416wXDN4zAeD8QTxcSdDzw0U-9HTs5RlyIfJh7oK1CMg5_46Hs6xFt25ZpDpLu_umSfL88fm9di975926x3RQelTgW0ru9Rt1BjVUGJRnTUyq7L0ddlRbJE5Zq6IWpbk7MmVAZkrzpjBFYIS_Y4zz0G_33KB9q9P4Upr7T5OV2ilBoyVcxUF3yMgZw9hmFswo-Vwp7N2NmMnc1k_mHm9zH58A8rAIFoEH4BDu9h-w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1466251163</pqid></control><display><type>article</type><title>A simple test for random effects in regression models</title><source>JSTOR Archival Journals and Primary Sources Collection</source><source>Oxford Journals Online</source><creator>Wood, Simon N.</creator><creatorcontrib>Wood, Simon N.</creatorcontrib><description>Testing that random effects are zero is difficult, because the null hypothesis restricts the corresponding variance parameter to the edge of the feasible parameter space. In the context of generalized linear mixed models, this paper exploits the link between random effects and penalized regression to develop a simple test for a zero effect. The idea is to treat the variance components not being tested as fixed at their estimates and then to express the likelihood ratio as a readily computed quadratic form in the predicted values of the random effects. Under the null hypothesis this has the distribution of a weighted sum of squares of independent standard normal random variables. The test can be used with generalized linear mixed models, including those estimated by penalized quasilikelihood.</description><identifier>ISSN: 0006-3444</identifier><identifier>EISSN: 1464-3510</identifier><identifier>DOI: 10.1093/biomet/ast038</identifier><identifier>CODEN: BIOKAX</identifier><language>eng</language><publisher>Oxford: Biometrika Trust, University College London</publisher><subject>Generalized linear models ; Hypotheses ; Hypothesis testing ; Miscellanea ; Probability distribution ; Random variables ; Regression analysis ; Studies</subject><ispartof>Biometrika, 2013-12, Vol.100 (4), p.1005-1010</ispartof><rights>2013 Biometrika Trust</rights><rights>Copyright Oxford Publishing Limited(England) Dec 2013</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c326t-3bfdd56b3957732580ceb1cc1ccd927e1254fa9aeebb8ebb9e54831d4c8805753</citedby><cites>FETCH-LOGICAL-c326t-3bfdd56b3957732580ceb1cc1ccd927e1254fa9aeebb8ebb9e54831d4c8805753</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/43305585$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/43305585$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,58237,58470</link.rule.ids></links><search><creatorcontrib>Wood, Simon N.</creatorcontrib><title>A simple test for random effects in regression models</title><title>Biometrika</title><description>Testing that random effects are zero is difficult, because the null hypothesis restricts the corresponding variance parameter to the edge of the feasible parameter space. In the context of generalized linear mixed models, this paper exploits the link between random effects and penalized regression to develop a simple test for a zero effect. The idea is to treat the variance components not being tested as fixed at their estimates and then to express the likelihood ratio as a readily computed quadratic form in the predicted values of the random effects. Under the null hypothesis this has the distribution of a weighted sum of squares of independent standard normal random variables. The test can be used with generalized linear mixed models, including those estimated by penalized quasilikelihood.</description><subject>Generalized linear models</subject><subject>Hypotheses</subject><subject>Hypothesis testing</subject><subject>Miscellanea</subject><subject>Probability distribution</subject><subject>Random variables</subject><subject>Regression analysis</subject><subject>Studies</subject><issn>0006-3444</issn><issn>1464-3510</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNo9kEtLAzEQgIMoWKtHj0LA89pkJ5PNHkvRKhS86DnsYyJbupuapAf_vSkrwgzDwMc8PsbupXiSooZVO_iR0qqJSYC5YAuptCoApbhkCyGELkApdc1uYtyfW416wXDN4zAeD8QTxcSdDzw0U-9HTs5RlyIfJh7oK1CMg5_46Hs6xFt25ZpDpLu_umSfL88fm9di975926x3RQelTgW0ru9Rt1BjVUGJRnTUyq7L0ddlRbJE5Zq6IWpbk7MmVAZkrzpjBFYIS_Y4zz0G_33KB9q9P4Upr7T5OV2ilBoyVcxUF3yMgZw9hmFswo-Vwp7N2NmMnc1k_mHm9zH58A8rAIFoEH4BDu9h-w</recordid><startdate>20131201</startdate><enddate>20131201</enddate><creator>Wood, Simon N.</creator><general>Biometrika Trust, University College London</general><general>Oxford Publishing Limited (England)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope></search><sort><creationdate>20131201</creationdate><title>A simple test for random effects in regression models</title><author>Wood, Simon N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c326t-3bfdd56b3957732580ceb1cc1ccd927e1254fa9aeebb8ebb9e54831d4c8805753</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Generalized linear models</topic><topic>Hypotheses</topic><topic>Hypothesis testing</topic><topic>Miscellanea</topic><topic>Probability distribution</topic><topic>Random variables</topic><topic>Regression analysis</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wood, Simon N.</creatorcontrib><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Biometrika</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wood, Simon N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A simple test for random effects in regression models</atitle><jtitle>Biometrika</jtitle><date>2013-12-01</date><risdate>2013</risdate><volume>100</volume><issue>4</issue><spage>1005</spage><epage>1010</epage><pages>1005-1010</pages><issn>0006-3444</issn><eissn>1464-3510</eissn><coden>BIOKAX</coden><abstract>Testing that random effects are zero is difficult, because the null hypothesis restricts the corresponding variance parameter to the edge of the feasible parameter space. In the context of generalized linear mixed models, this paper exploits the link between random effects and penalized regression to develop a simple test for a zero effect. The idea is to treat the variance components not being tested as fixed at their estimates and then to express the likelihood ratio as a readily computed quadratic form in the predicted values of the random effects. Under the null hypothesis this has the distribution of a weighted sum of squares of independent standard normal random variables. The test can be used with generalized linear mixed models, including those estimated by penalized quasilikelihood.</abstract><cop>Oxford</cop><pub>Biometrika Trust, University College London</pub><doi>10.1093/biomet/ast038</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0006-3444
ispartof Biometrika, 2013-12, Vol.100 (4), p.1005-1010
issn 0006-3444
1464-3510
language eng
recordid cdi_proquest_journals_1466251163
source JSTOR Archival Journals and Primary Sources Collection; Oxford Journals Online
subjects Generalized linear models
Hypotheses
Hypothesis testing
Miscellanea
Probability distribution
Random variables
Regression analysis
Studies
title A simple test for random effects in regression models
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T08%3A26%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20simple%20test%20for%20random%20effects%20in%20regression%20models&rft.jtitle=Biometrika&rft.au=Wood,%20Simon%20N.&rft.date=2013-12-01&rft.volume=100&rft.issue=4&rft.spage=1005&rft.epage=1010&rft.pages=1005-1010&rft.issn=0006-3444&rft.eissn=1464-3510&rft.coden=BIOKAX&rft_id=info:doi/10.1093/biomet/ast038&rft_dat=%3Cjstor_proqu%3E43305585%3C/jstor_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c326t-3bfdd56b3957732580ceb1cc1ccd927e1254fa9aeebb8ebb9e54831d4c8805753%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1466251163&rft_id=info:pmid/&rft_jstor_id=43305585&rfr_iscdi=true