Loading…
A simple test for random effects in regression models
Testing that random effects are zero is difficult, because the null hypothesis restricts the corresponding variance parameter to the edge of the feasible parameter space. In the context of generalized linear mixed models, this paper exploits the link between random effects and penalized regression t...
Saved in:
Published in: | Biometrika 2013-12, Vol.100 (4), p.1005-1010 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c326t-3bfdd56b3957732580ceb1cc1ccd927e1254fa9aeebb8ebb9e54831d4c8805753 |
---|---|
cites | cdi_FETCH-LOGICAL-c326t-3bfdd56b3957732580ceb1cc1ccd927e1254fa9aeebb8ebb9e54831d4c8805753 |
container_end_page | 1010 |
container_issue | 4 |
container_start_page | 1005 |
container_title | Biometrika |
container_volume | 100 |
creator | Wood, Simon N. |
description | Testing that random effects are zero is difficult, because the null hypothesis restricts the corresponding variance parameter to the edge of the feasible parameter space. In the context of generalized linear mixed models, this paper exploits the link between random effects and penalized regression to develop a simple test for a zero effect. The idea is to treat the variance components not being tested as fixed at their estimates and then to express the likelihood ratio as a readily computed quadratic form in the predicted values of the random effects. Under the null hypothesis this has the distribution of a weighted sum of squares of independent standard normal random variables. The test can be used with generalized linear mixed models, including those estimated by penalized quasilikelihood. |
doi_str_mv | 10.1093/biomet/ast038 |
format | article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_1466251163</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>43305585</jstor_id><sourcerecordid>43305585</sourcerecordid><originalsourceid>FETCH-LOGICAL-c326t-3bfdd56b3957732580ceb1cc1ccd927e1254fa9aeebb8ebb9e54831d4c8805753</originalsourceid><addsrcrecordid>eNo9kEtLAzEQgIMoWKtHj0LA89pkJ5PNHkvRKhS86DnsYyJbupuapAf_vSkrwgzDwMc8PsbupXiSooZVO_iR0qqJSYC5YAuptCoApbhkCyGELkApdc1uYtyfW416wXDN4zAeD8QTxcSdDzw0U-9HTs5RlyIfJh7oK1CMg5_46Hs6xFt25ZpDpLu_umSfL88fm9di975926x3RQelTgW0ru9Rt1BjVUGJRnTUyq7L0ddlRbJE5Zq6IWpbk7MmVAZkrzpjBFYIS_Y4zz0G_33KB9q9P4Upr7T5OV2ilBoyVcxUF3yMgZw9hmFswo-Vwp7N2NmMnc1k_mHm9zH58A8rAIFoEH4BDu9h-w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1466251163</pqid></control><display><type>article</type><title>A simple test for random effects in regression models</title><source>JSTOR Archival Journals and Primary Sources Collection</source><source>Oxford Journals Online</source><creator>Wood, Simon N.</creator><creatorcontrib>Wood, Simon N.</creatorcontrib><description>Testing that random effects are zero is difficult, because the null hypothesis restricts the corresponding variance parameter to the edge of the feasible parameter space. In the context of generalized linear mixed models, this paper exploits the link between random effects and penalized regression to develop a simple test for a zero effect. The idea is to treat the variance components not being tested as fixed at their estimates and then to express the likelihood ratio as a readily computed quadratic form in the predicted values of the random effects. Under the null hypothesis this has the distribution of a weighted sum of squares of independent standard normal random variables. The test can be used with generalized linear mixed models, including those estimated by penalized quasilikelihood.</description><identifier>ISSN: 0006-3444</identifier><identifier>EISSN: 1464-3510</identifier><identifier>DOI: 10.1093/biomet/ast038</identifier><identifier>CODEN: BIOKAX</identifier><language>eng</language><publisher>Oxford: Biometrika Trust, University College London</publisher><subject>Generalized linear models ; Hypotheses ; Hypothesis testing ; Miscellanea ; Probability distribution ; Random variables ; Regression analysis ; Studies</subject><ispartof>Biometrika, 2013-12, Vol.100 (4), p.1005-1010</ispartof><rights>2013 Biometrika Trust</rights><rights>Copyright Oxford Publishing Limited(England) Dec 2013</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c326t-3bfdd56b3957732580ceb1cc1ccd927e1254fa9aeebb8ebb9e54831d4c8805753</citedby><cites>FETCH-LOGICAL-c326t-3bfdd56b3957732580ceb1cc1ccd927e1254fa9aeebb8ebb9e54831d4c8805753</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/43305585$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/43305585$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,58237,58470</link.rule.ids></links><search><creatorcontrib>Wood, Simon N.</creatorcontrib><title>A simple test for random effects in regression models</title><title>Biometrika</title><description>Testing that random effects are zero is difficult, because the null hypothesis restricts the corresponding variance parameter to the edge of the feasible parameter space. In the context of generalized linear mixed models, this paper exploits the link between random effects and penalized regression to develop a simple test for a zero effect. The idea is to treat the variance components not being tested as fixed at their estimates and then to express the likelihood ratio as a readily computed quadratic form in the predicted values of the random effects. Under the null hypothesis this has the distribution of a weighted sum of squares of independent standard normal random variables. The test can be used with generalized linear mixed models, including those estimated by penalized quasilikelihood.</description><subject>Generalized linear models</subject><subject>Hypotheses</subject><subject>Hypothesis testing</subject><subject>Miscellanea</subject><subject>Probability distribution</subject><subject>Random variables</subject><subject>Regression analysis</subject><subject>Studies</subject><issn>0006-3444</issn><issn>1464-3510</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNo9kEtLAzEQgIMoWKtHj0LA89pkJ5PNHkvRKhS86DnsYyJbupuapAf_vSkrwgzDwMc8PsbupXiSooZVO_iR0qqJSYC5YAuptCoApbhkCyGELkApdc1uYtyfW416wXDN4zAeD8QTxcSdDzw0U-9HTs5RlyIfJh7oK1CMg5_46Hs6xFt25ZpDpLu_umSfL88fm9di975926x3RQelTgW0ru9Rt1BjVUGJRnTUyq7L0ddlRbJE5Zq6IWpbk7MmVAZkrzpjBFYIS_Y4zz0G_33KB9q9P4Upr7T5OV2ilBoyVcxUF3yMgZw9hmFswo-Vwp7N2NmMnc1k_mHm9zH58A8rAIFoEH4BDu9h-w</recordid><startdate>20131201</startdate><enddate>20131201</enddate><creator>Wood, Simon N.</creator><general>Biometrika Trust, University College London</general><general>Oxford Publishing Limited (England)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope></search><sort><creationdate>20131201</creationdate><title>A simple test for random effects in regression models</title><author>Wood, Simon N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c326t-3bfdd56b3957732580ceb1cc1ccd927e1254fa9aeebb8ebb9e54831d4c8805753</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Generalized linear models</topic><topic>Hypotheses</topic><topic>Hypothesis testing</topic><topic>Miscellanea</topic><topic>Probability distribution</topic><topic>Random variables</topic><topic>Regression analysis</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wood, Simon N.</creatorcontrib><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Biometrika</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wood, Simon N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A simple test for random effects in regression models</atitle><jtitle>Biometrika</jtitle><date>2013-12-01</date><risdate>2013</risdate><volume>100</volume><issue>4</issue><spage>1005</spage><epage>1010</epage><pages>1005-1010</pages><issn>0006-3444</issn><eissn>1464-3510</eissn><coden>BIOKAX</coden><abstract>Testing that random effects are zero is difficult, because the null hypothesis restricts the corresponding variance parameter to the edge of the feasible parameter space. In the context of generalized linear mixed models, this paper exploits the link between random effects and penalized regression to develop a simple test for a zero effect. The idea is to treat the variance components not being tested as fixed at their estimates and then to express the likelihood ratio as a readily computed quadratic form in the predicted values of the random effects. Under the null hypothesis this has the distribution of a weighted sum of squares of independent standard normal random variables. The test can be used with generalized linear mixed models, including those estimated by penalized quasilikelihood.</abstract><cop>Oxford</cop><pub>Biometrika Trust, University College London</pub><doi>10.1093/biomet/ast038</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0006-3444 |
ispartof | Biometrika, 2013-12, Vol.100 (4), p.1005-1010 |
issn | 0006-3444 1464-3510 |
language | eng |
recordid | cdi_proquest_journals_1466251163 |
source | JSTOR Archival Journals and Primary Sources Collection; Oxford Journals Online |
subjects | Generalized linear models Hypotheses Hypothesis testing Miscellanea Probability distribution Random variables Regression analysis Studies |
title | A simple test for random effects in regression models |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T08%3A26%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20simple%20test%20for%20random%20effects%20in%20regression%20models&rft.jtitle=Biometrika&rft.au=Wood,%20Simon%20N.&rft.date=2013-12-01&rft.volume=100&rft.issue=4&rft.spage=1005&rft.epage=1010&rft.pages=1005-1010&rft.issn=0006-3444&rft.eissn=1464-3510&rft.coden=BIOKAX&rft_id=info:doi/10.1093/biomet/ast038&rft_dat=%3Cjstor_proqu%3E43305585%3C/jstor_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c326t-3bfdd56b3957732580ceb1cc1ccd927e1254fa9aeebb8ebb9e54831d4c8805753%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1466251163&rft_id=info:pmid/&rft_jstor_id=43305585&rfr_iscdi=true |