Loading…

Analytical prediction of stepped feature generation in multi-pass single point incremental forming

Single point incremental forming (SPIF) is a new sheet metal forming process characterized by higher formability, product independent tooling and greater process flexibility. The inability of conventional single pass SPIF to form vertical walls without failure is overcome by forming multiple interme...

Full description

Saved in:
Bibliographic Details
Published in:Journal of manufacturing processes 2012-10, Vol.14 (4), p.487-494
Main Authors: Xu, Dongkai, Malhotra, Rajiv, Reddy, N. Venkata, Chen, Jun, Cao, Jian
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Single point incremental forming (SPIF) is a new sheet metal forming process characterized by higher formability, product independent tooling and greater process flexibility. The inability of conventional single pass SPIF to form vertical walls without failure is overcome by forming multiple intermediate shapes before forming the final component, i.e., multi-pass single point incremental forming (MSPIF). A major issue with MSPIF is significant geometric inaccuracy of the formed component, due to the generation of stepped features on the base. This work proposes analytical formulations that are shown to accurately and quantitatively predict the stepped feature formation in MSPIF. Additionally, a relationship is derived among the material constants used in these analytical equations, the yield stress and thickness of the blank material, such that the computational effort required for the calibration of these constants can be minimized. Finally, the physical effects of yield stress and sheet thickness on the rigid body translation are further discussed.
ISSN:1526-6125
2212-4616
DOI:10.1016/j.jmapro.2012.08.003