Loading…

Systematic study of photoluminescence, lyoluminescence and mechanoluminescence in Ce3+- and Eu3+-activated Li3PO4 phosphors

ABSTRACT Li3PO4 phosphor was prepared using a modified solid‐state diffusion technique. In this work, photoluminescence, lyoluminescence and mechanoluminescence studies were carried out in a Li3PO4 microcrystalline powder doped with different rare earths. In photoluminescence studies, characteristic...

Full description

Saved in:
Bibliographic Details
Published in:Luminescence (Chichester, England) England), 2014-02, Vol.29 (1), p.58-64
Main Authors: Sahu, A. K., Kore, Bhushan P, Chowdhary, P. S., Nayar, V., Dhoble, S. J.
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 64
container_issue 1
container_start_page 58
container_title Luminescence (Chichester, England)
container_volume 29
creator Sahu, A. K.
Kore, Bhushan P
Chowdhary, P. S.
Nayar, V.
Dhoble, S. J.
description ABSTRACT Li3PO4 phosphor was prepared using a modified solid‐state diffusion technique. In this work, photoluminescence, lyoluminescence and mechanoluminescence studies were carried out in a Li3PO4 microcrystalline powder doped with different rare earths. In photoluminescence studies, characteristic emission of Ce and Eu was observed. The lyoluminescence glow curves of Li3PO4 microcrystals show that lyoluminescence intensity initially increases with time and then decreases exponentially. The decay time consists of two components for all masses. The dependence of decay time, especially the longer component, on mass has been investigated. Experiments on γ‐irradiated crystals have proved that the light emission originates from the recombination of released F‐centres with trapped holes (V2‐centres) at the sulfuric acid–solid interface. Incorporation of bivalent alkali in solid lithium phosphate leads to an enhancement of lyoluminescence. A possible explanation for the experimental results has been attempted. The phosphor has a mechanoluminescence single glow peak. Mechanoluminescence intensity under various loading conditions was investigated. It is observed that mechanoluminescence intensity increases with increasing impurity concentration and increasing piston impact velocity. The results may be considered as only being of academic interest in solid‐state materials. Copyright © 2013 John Wiley & Sons, Ltd.
doi_str_mv 10.1002/bio.2502
format article
fullrecord <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_journals_1477650681</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3182523141</sourcerecordid><originalsourceid>FETCH-LOGICAL-i2552-516e2a42a31379e9977f17f572f0e1f305c835698455aed8db900792942071573</originalsourceid><addsrcrecordid>eNpVkF9LwzAUxYMoOKfgRwj4qJ3JTZM0j27OORhO8N9jyNqUZa7tbFq1-OVtnSh7uJzD4ce5cBA6pWRACYHLhSsGwAnsoR7lAIGEkO3_ecYP0ZH3K0KIEEL10NdD4yubmcrF2Fd10uAixZtlURXrOnO59bHNY3uB181OgE2e4MzGS5Pv5i7HI8vOgx9gXLfOxJV7N5VN8Myx-3nYtfv2Sn-MDlKz9vbkV_vo6Wb8OLoNZvPJdHQ1CxxwDgGnwoIJwTDKpLJKSZlSmXIJKbE0ZYTHEeNCRSHnxiZRslCESAUqBCIpl6yPzra9m7J4q62v9Kqoy7x9qWkopeBERLSlgi314da20ZvSZaZsNCW621W3u-puVz2czjv951074Ocfb8pXLSSTXL_cTfQzDMNrNhQa2Ddcunp6</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1477650681</pqid></control><display><type>article</type><title>Systematic study of photoluminescence, lyoluminescence and mechanoluminescence in Ce3+- and Eu3+-activated Li3PO4 phosphors</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Sahu, A. K. ; Kore, Bhushan P ; Chowdhary, P. S. ; Nayar, V. ; Dhoble, S. J.</creator><creatorcontrib>Sahu, A. K. ; Kore, Bhushan P ; Chowdhary, P. S. ; Nayar, V. ; Dhoble, S. J.</creatorcontrib><description>ABSTRACT Li3PO4 phosphor was prepared using a modified solid‐state diffusion technique. In this work, photoluminescence, lyoluminescence and mechanoluminescence studies were carried out in a Li3PO4 microcrystalline powder doped with different rare earths. In photoluminescence studies, characteristic emission of Ce and Eu was observed. The lyoluminescence glow curves of Li3PO4 microcrystals show that lyoluminescence intensity initially increases with time and then decreases exponentially. The decay time consists of two components for all masses. The dependence of decay time, especially the longer component, on mass has been investigated. Experiments on γ‐irradiated crystals have proved that the light emission originates from the recombination of released F‐centres with trapped holes (V2‐centres) at the sulfuric acid–solid interface. Incorporation of bivalent alkali in solid lithium phosphate leads to an enhancement of lyoluminescence. A possible explanation for the experimental results has been attempted. The phosphor has a mechanoluminescence single glow peak. Mechanoluminescence intensity under various loading conditions was investigated. It is observed that mechanoluminescence intensity increases with increasing impurity concentration and increasing piston impact velocity. The results may be considered as only being of academic interest in solid‐state materials. Copyright © 2013 John Wiley &amp; Sons, Ltd.</description><identifier>ISSN: 1522-7235</identifier><identifier>EISSN: 1522-7243</identifier><identifier>DOI: 10.1002/bio.2502</identifier><language>eng</language><publisher>Bognor Regis: Blackwell Publishing Ltd</publisher><subject>dosimetry ; Li3PO4 ; lyoluminescence ; phosphor ; photoluminescence</subject><ispartof>Luminescence (Chichester, England), 2014-02, Vol.29 (1), p.58-64</ispartof><rights>Copyright © 2013 John Wiley &amp; Sons, Ltd.</rights><rights>Copyright © 2014 John Wiley &amp; Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Sahu, A. K.</creatorcontrib><creatorcontrib>Kore, Bhushan P</creatorcontrib><creatorcontrib>Chowdhary, P. S.</creatorcontrib><creatorcontrib>Nayar, V.</creatorcontrib><creatorcontrib>Dhoble, S. J.</creatorcontrib><title>Systematic study of photoluminescence, lyoluminescence and mechanoluminescence in Ce3+- and Eu3+-activated Li3PO4 phosphors</title><title>Luminescence (Chichester, England)</title><addtitle>Luminescence</addtitle><description>ABSTRACT Li3PO4 phosphor was prepared using a modified solid‐state diffusion technique. In this work, photoluminescence, lyoluminescence and mechanoluminescence studies were carried out in a Li3PO4 microcrystalline powder doped with different rare earths. In photoluminescence studies, characteristic emission of Ce and Eu was observed. The lyoluminescence glow curves of Li3PO4 microcrystals show that lyoluminescence intensity initially increases with time and then decreases exponentially. The decay time consists of two components for all masses. The dependence of decay time, especially the longer component, on mass has been investigated. Experiments on γ‐irradiated crystals have proved that the light emission originates from the recombination of released F‐centres with trapped holes (V2‐centres) at the sulfuric acid–solid interface. Incorporation of bivalent alkali in solid lithium phosphate leads to an enhancement of lyoluminescence. A possible explanation for the experimental results has been attempted. The phosphor has a mechanoluminescence single glow peak. Mechanoluminescence intensity under various loading conditions was investigated. It is observed that mechanoluminescence intensity increases with increasing impurity concentration and increasing piston impact velocity. The results may be considered as only being of academic interest in solid‐state materials. Copyright © 2013 John Wiley &amp; Sons, Ltd.</description><subject>dosimetry</subject><subject>Li3PO4</subject><subject>lyoluminescence</subject><subject>phosphor</subject><subject>photoluminescence</subject><issn>1522-7235</issn><issn>1522-7243</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNpVkF9LwzAUxYMoOKfgRwj4qJ3JTZM0j27OORhO8N9jyNqUZa7tbFq1-OVtnSh7uJzD4ce5cBA6pWRACYHLhSsGwAnsoR7lAIGEkO3_ecYP0ZH3K0KIEEL10NdD4yubmcrF2Fd10uAixZtlURXrOnO59bHNY3uB181OgE2e4MzGS5Pv5i7HI8vOgx9gXLfOxJV7N5VN8Myx-3nYtfv2Sn-MDlKz9vbkV_vo6Wb8OLoNZvPJdHQ1CxxwDgGnwoIJwTDKpLJKSZlSmXIJKbE0ZYTHEeNCRSHnxiZRslCESAUqBCIpl6yPzra9m7J4q62v9Kqoy7x9qWkopeBERLSlgi314da20ZvSZaZsNCW621W3u-puVz2czjv951074Ocfb8pXLSSTXL_cTfQzDMNrNhQa2Ddcunp6</recordid><startdate>201402</startdate><enddate>201402</enddate><creator>Sahu, A. K.</creator><creator>Kore, Bhushan P</creator><creator>Chowdhary, P. S.</creator><creator>Nayar, V.</creator><creator>Dhoble, S. J.</creator><general>Blackwell Publishing Ltd</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>7QF</scope><scope>7QO</scope><scope>7QP</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>7U7</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H95</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope></search><sort><creationdate>201402</creationdate><title>Systematic study of photoluminescence, lyoluminescence and mechanoluminescence in Ce3+- and Eu3+-activated Li3PO4 phosphors</title><author>Sahu, A. K. ; Kore, Bhushan P ; Chowdhary, P. S. ; Nayar, V. ; Dhoble, S. J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i2552-516e2a42a31379e9977f17f572f0e1f305c835698455aed8db900792942071573</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>dosimetry</topic><topic>Li3PO4</topic><topic>lyoluminescence</topic><topic>phosphor</topic><topic>photoluminescence</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sahu, A. K.</creatorcontrib><creatorcontrib>Kore, Bhushan P</creatorcontrib><creatorcontrib>Chowdhary, P. S.</creatorcontrib><creatorcontrib>Nayar, V.</creatorcontrib><creatorcontrib>Dhoble, S. J.</creatorcontrib><collection>Istex</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Toxicology Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 1: Biological Sciences &amp; Living Resources</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Luminescence (Chichester, England)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sahu, A. K.</au><au>Kore, Bhushan P</au><au>Chowdhary, P. S.</au><au>Nayar, V.</au><au>Dhoble, S. J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Systematic study of photoluminescence, lyoluminescence and mechanoluminescence in Ce3+- and Eu3+-activated Li3PO4 phosphors</atitle><jtitle>Luminescence (Chichester, England)</jtitle><addtitle>Luminescence</addtitle><date>2014-02</date><risdate>2014</risdate><volume>29</volume><issue>1</issue><spage>58</spage><epage>64</epage><pages>58-64</pages><issn>1522-7235</issn><eissn>1522-7243</eissn><abstract>ABSTRACT Li3PO4 phosphor was prepared using a modified solid‐state diffusion technique. In this work, photoluminescence, lyoluminescence and mechanoluminescence studies were carried out in a Li3PO4 microcrystalline powder doped with different rare earths. In photoluminescence studies, characteristic emission of Ce and Eu was observed. The lyoluminescence glow curves of Li3PO4 microcrystals show that lyoluminescence intensity initially increases with time and then decreases exponentially. The decay time consists of two components for all masses. The dependence of decay time, especially the longer component, on mass has been investigated. Experiments on γ‐irradiated crystals have proved that the light emission originates from the recombination of released F‐centres with trapped holes (V2‐centres) at the sulfuric acid–solid interface. Incorporation of bivalent alkali in solid lithium phosphate leads to an enhancement of lyoluminescence. A possible explanation for the experimental results has been attempted. The phosphor has a mechanoluminescence single glow peak. Mechanoluminescence intensity under various loading conditions was investigated. It is observed that mechanoluminescence intensity increases with increasing impurity concentration and increasing piston impact velocity. The results may be considered as only being of academic interest in solid‐state materials. Copyright © 2013 John Wiley &amp; Sons, Ltd.</abstract><cop>Bognor Regis</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1002/bio.2502</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1522-7235
ispartof Luminescence (Chichester, England), 2014-02, Vol.29 (1), p.58-64
issn 1522-7235
1522-7243
language eng
recordid cdi_proquest_journals_1477650681
source Wiley-Blackwell Read & Publish Collection
subjects dosimetry
Li3PO4
lyoluminescence
phosphor
photoluminescence
title Systematic study of photoluminescence, lyoluminescence and mechanoluminescence in Ce3+- and Eu3+-activated Li3PO4 phosphors
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T03%3A51%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Systematic%20study%20of%20photoluminescence,%20lyoluminescence%20and%20mechanoluminescence%20in%20Ce3+-%20and%20Eu3+-activated%20Li3PO4%20phosphors&rft.jtitle=Luminescence%20(Chichester,%20England)&rft.au=Sahu,%20A.%20K.&rft.date=2014-02&rft.volume=29&rft.issue=1&rft.spage=58&rft.epage=64&rft.pages=58-64&rft.issn=1522-7235&rft.eissn=1522-7243&rft_id=info:doi/10.1002/bio.2502&rft_dat=%3Cproquest_wiley%3E3182523141%3C/proquest_wiley%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i2552-516e2a42a31379e9977f17f572f0e1f305c835698455aed8db900792942071573%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1477650681&rft_id=info:pmid/&rfr_iscdi=true