Loading…
Systematic study of photoluminescence, lyoluminescence and mechanoluminescence in Ce3+- and Eu3+-activated Li3PO4 phosphors
ABSTRACT Li3PO4 phosphor was prepared using a modified solid‐state diffusion technique. In this work, photoluminescence, lyoluminescence and mechanoluminescence studies were carried out in a Li3PO4 microcrystalline powder doped with different rare earths. In photoluminescence studies, characteristic...
Saved in:
Published in: | Luminescence (Chichester, England) England), 2014-02, Vol.29 (1), p.58-64 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 64 |
container_issue | 1 |
container_start_page | 58 |
container_title | Luminescence (Chichester, England) |
container_volume | 29 |
creator | Sahu, A. K. Kore, Bhushan P Chowdhary, P. S. Nayar, V. Dhoble, S. J. |
description | ABSTRACT
Li3PO4 phosphor was prepared using a modified solid‐state diffusion technique. In this work, photoluminescence, lyoluminescence and mechanoluminescence studies were carried out in a Li3PO4 microcrystalline powder doped with different rare earths. In photoluminescence studies, characteristic emission of Ce and Eu was observed. The lyoluminescence glow curves of Li3PO4 microcrystals show that lyoluminescence intensity initially increases with time and then decreases exponentially. The decay time consists of two components for all masses. The dependence of decay time, especially the longer component, on mass has been investigated. Experiments on γ‐irradiated crystals have proved that the light emission originates from the recombination of released F‐centres with trapped holes (V2‐centres) at the sulfuric acid–solid interface. Incorporation of bivalent alkali in solid lithium phosphate leads to an enhancement of lyoluminescence. A possible explanation for the experimental results has been attempted. The phosphor has a mechanoluminescence single glow peak. Mechanoluminescence intensity under various loading conditions was investigated. It is observed that mechanoluminescence intensity increases with increasing impurity concentration and increasing piston impact velocity. The results may be considered as only being of academic interest in solid‐state materials. Copyright © 2013 John Wiley & Sons, Ltd. |
doi_str_mv | 10.1002/bio.2502 |
format | article |
fullrecord | <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_journals_1477650681</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3182523141</sourcerecordid><originalsourceid>FETCH-LOGICAL-i2552-516e2a42a31379e9977f17f572f0e1f305c835698455aed8db900792942071573</originalsourceid><addsrcrecordid>eNpVkF9LwzAUxYMoOKfgRwj4qJ3JTZM0j27OORhO8N9jyNqUZa7tbFq1-OVtnSh7uJzD4ce5cBA6pWRACYHLhSsGwAnsoR7lAIGEkO3_ecYP0ZH3K0KIEEL10NdD4yubmcrF2Fd10uAixZtlURXrOnO59bHNY3uB181OgE2e4MzGS5Pv5i7HI8vOgx9gXLfOxJV7N5VN8Myx-3nYtfv2Sn-MDlKz9vbkV_vo6Wb8OLoNZvPJdHQ1CxxwDgGnwoIJwTDKpLJKSZlSmXIJKbE0ZYTHEeNCRSHnxiZRslCESAUqBCIpl6yPzra9m7J4q62v9Kqoy7x9qWkopeBERLSlgi314da20ZvSZaZsNCW621W3u-puVz2czjv951074Ocfb8pXLSSTXL_cTfQzDMNrNhQa2Ddcunp6</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1477650681</pqid></control><display><type>article</type><title>Systematic study of photoluminescence, lyoluminescence and mechanoluminescence in Ce3+- and Eu3+-activated Li3PO4 phosphors</title><source>Wiley-Blackwell Read & Publish Collection</source><creator>Sahu, A. K. ; Kore, Bhushan P ; Chowdhary, P. S. ; Nayar, V. ; Dhoble, S. J.</creator><creatorcontrib>Sahu, A. K. ; Kore, Bhushan P ; Chowdhary, P. S. ; Nayar, V. ; Dhoble, S. J.</creatorcontrib><description>ABSTRACT
Li3PO4 phosphor was prepared using a modified solid‐state diffusion technique. In this work, photoluminescence, lyoluminescence and mechanoluminescence studies were carried out in a Li3PO4 microcrystalline powder doped with different rare earths. In photoluminescence studies, characteristic emission of Ce and Eu was observed. The lyoluminescence glow curves of Li3PO4 microcrystals show that lyoluminescence intensity initially increases with time and then decreases exponentially. The decay time consists of two components for all masses. The dependence of decay time, especially the longer component, on mass has been investigated. Experiments on γ‐irradiated crystals have proved that the light emission originates from the recombination of released F‐centres with trapped holes (V2‐centres) at the sulfuric acid–solid interface. Incorporation of bivalent alkali in solid lithium phosphate leads to an enhancement of lyoluminescence. A possible explanation for the experimental results has been attempted. The phosphor has a mechanoluminescence single glow peak. Mechanoluminescence intensity under various loading conditions was investigated. It is observed that mechanoluminescence intensity increases with increasing impurity concentration and increasing piston impact velocity. The results may be considered as only being of academic interest in solid‐state materials. Copyright © 2013 John Wiley & Sons, Ltd.</description><identifier>ISSN: 1522-7235</identifier><identifier>EISSN: 1522-7243</identifier><identifier>DOI: 10.1002/bio.2502</identifier><language>eng</language><publisher>Bognor Regis: Blackwell Publishing Ltd</publisher><subject>dosimetry ; Li3PO4 ; lyoluminescence ; phosphor ; photoluminescence</subject><ispartof>Luminescence (Chichester, England), 2014-02, Vol.29 (1), p.58-64</ispartof><rights>Copyright © 2013 John Wiley & Sons, Ltd.</rights><rights>Copyright © 2014 John Wiley & Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Sahu, A. K.</creatorcontrib><creatorcontrib>Kore, Bhushan P</creatorcontrib><creatorcontrib>Chowdhary, P. S.</creatorcontrib><creatorcontrib>Nayar, V.</creatorcontrib><creatorcontrib>Dhoble, S. J.</creatorcontrib><title>Systematic study of photoluminescence, lyoluminescence and mechanoluminescence in Ce3+- and Eu3+-activated Li3PO4 phosphors</title><title>Luminescence (Chichester, England)</title><addtitle>Luminescence</addtitle><description>ABSTRACT
Li3PO4 phosphor was prepared using a modified solid‐state diffusion technique. In this work, photoluminescence, lyoluminescence and mechanoluminescence studies were carried out in a Li3PO4 microcrystalline powder doped with different rare earths. In photoluminescence studies, characteristic emission of Ce and Eu was observed. The lyoluminescence glow curves of Li3PO4 microcrystals show that lyoluminescence intensity initially increases with time and then decreases exponentially. The decay time consists of two components for all masses. The dependence of decay time, especially the longer component, on mass has been investigated. Experiments on γ‐irradiated crystals have proved that the light emission originates from the recombination of released F‐centres with trapped holes (V2‐centres) at the sulfuric acid–solid interface. Incorporation of bivalent alkali in solid lithium phosphate leads to an enhancement of lyoluminescence. A possible explanation for the experimental results has been attempted. The phosphor has a mechanoluminescence single glow peak. Mechanoluminescence intensity under various loading conditions was investigated. It is observed that mechanoluminescence intensity increases with increasing impurity concentration and increasing piston impact velocity. The results may be considered as only being of academic interest in solid‐state materials. Copyright © 2013 John Wiley & Sons, Ltd.</description><subject>dosimetry</subject><subject>Li3PO4</subject><subject>lyoluminescence</subject><subject>phosphor</subject><subject>photoluminescence</subject><issn>1522-7235</issn><issn>1522-7243</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNpVkF9LwzAUxYMoOKfgRwj4qJ3JTZM0j27OORhO8N9jyNqUZa7tbFq1-OVtnSh7uJzD4ce5cBA6pWRACYHLhSsGwAnsoR7lAIGEkO3_ecYP0ZH3K0KIEEL10NdD4yubmcrF2Fd10uAixZtlURXrOnO59bHNY3uB181OgE2e4MzGS5Pv5i7HI8vOgx9gXLfOxJV7N5VN8Myx-3nYtfv2Sn-MDlKz9vbkV_vo6Wb8OLoNZvPJdHQ1CxxwDgGnwoIJwTDKpLJKSZlSmXIJKbE0ZYTHEeNCRSHnxiZRslCESAUqBCIpl6yPzra9m7J4q62v9Kqoy7x9qWkopeBERLSlgi314da20ZvSZaZsNCW621W3u-puVz2czjv951074Ocfb8pXLSSTXL_cTfQzDMNrNhQa2Ddcunp6</recordid><startdate>201402</startdate><enddate>201402</enddate><creator>Sahu, A. K.</creator><creator>Kore, Bhushan P</creator><creator>Chowdhary, P. S.</creator><creator>Nayar, V.</creator><creator>Dhoble, S. J.</creator><general>Blackwell Publishing Ltd</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>7QF</scope><scope>7QO</scope><scope>7QP</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>7U7</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H95</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope></search><sort><creationdate>201402</creationdate><title>Systematic study of photoluminescence, lyoluminescence and mechanoluminescence in Ce3+- and Eu3+-activated Li3PO4 phosphors</title><author>Sahu, A. K. ; Kore, Bhushan P ; Chowdhary, P. S. ; Nayar, V. ; Dhoble, S. J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i2552-516e2a42a31379e9977f17f572f0e1f305c835698455aed8db900792942071573</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>dosimetry</topic><topic>Li3PO4</topic><topic>lyoluminescence</topic><topic>phosphor</topic><topic>photoluminescence</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sahu, A. K.</creatorcontrib><creatorcontrib>Kore, Bhushan P</creatorcontrib><creatorcontrib>Chowdhary, P. S.</creatorcontrib><creatorcontrib>Nayar, V.</creatorcontrib><creatorcontrib>Dhoble, S. J.</creatorcontrib><collection>Istex</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Toxicology Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Luminescence (Chichester, England)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sahu, A. K.</au><au>Kore, Bhushan P</au><au>Chowdhary, P. S.</au><au>Nayar, V.</au><au>Dhoble, S. J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Systematic study of photoluminescence, lyoluminescence and mechanoluminescence in Ce3+- and Eu3+-activated Li3PO4 phosphors</atitle><jtitle>Luminescence (Chichester, England)</jtitle><addtitle>Luminescence</addtitle><date>2014-02</date><risdate>2014</risdate><volume>29</volume><issue>1</issue><spage>58</spage><epage>64</epage><pages>58-64</pages><issn>1522-7235</issn><eissn>1522-7243</eissn><abstract>ABSTRACT
Li3PO4 phosphor was prepared using a modified solid‐state diffusion technique. In this work, photoluminescence, lyoluminescence and mechanoluminescence studies were carried out in a Li3PO4 microcrystalline powder doped with different rare earths. In photoluminescence studies, characteristic emission of Ce and Eu was observed. The lyoluminescence glow curves of Li3PO4 microcrystals show that lyoluminescence intensity initially increases with time and then decreases exponentially. The decay time consists of two components for all masses. The dependence of decay time, especially the longer component, on mass has been investigated. Experiments on γ‐irradiated crystals have proved that the light emission originates from the recombination of released F‐centres with trapped holes (V2‐centres) at the sulfuric acid–solid interface. Incorporation of bivalent alkali in solid lithium phosphate leads to an enhancement of lyoluminescence. A possible explanation for the experimental results has been attempted. The phosphor has a mechanoluminescence single glow peak. Mechanoluminescence intensity under various loading conditions was investigated. It is observed that mechanoluminescence intensity increases with increasing impurity concentration and increasing piston impact velocity. The results may be considered as only being of academic interest in solid‐state materials. Copyright © 2013 John Wiley & Sons, Ltd.</abstract><cop>Bognor Regis</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1002/bio.2502</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1522-7235 |
ispartof | Luminescence (Chichester, England), 2014-02, Vol.29 (1), p.58-64 |
issn | 1522-7235 1522-7243 |
language | eng |
recordid | cdi_proquest_journals_1477650681 |
source | Wiley-Blackwell Read & Publish Collection |
subjects | dosimetry Li3PO4 lyoluminescence phosphor photoluminescence |
title | Systematic study of photoluminescence, lyoluminescence and mechanoluminescence in Ce3+- and Eu3+-activated Li3PO4 phosphors |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T03%3A51%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Systematic%20study%20of%20photoluminescence,%20lyoluminescence%20and%20mechanoluminescence%20in%20Ce3+-%20and%20Eu3+-activated%20Li3PO4%20phosphors&rft.jtitle=Luminescence%20(Chichester,%20England)&rft.au=Sahu,%20A.%20K.&rft.date=2014-02&rft.volume=29&rft.issue=1&rft.spage=58&rft.epage=64&rft.pages=58-64&rft.issn=1522-7235&rft.eissn=1522-7243&rft_id=info:doi/10.1002/bio.2502&rft_dat=%3Cproquest_wiley%3E3182523141%3C/proquest_wiley%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i2552-516e2a42a31379e9977f17f572f0e1f305c835698455aed8db900792942071573%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1477650681&rft_id=info:pmid/&rfr_iscdi=true |