Loading…

Phylogenetic Diversity and Characterization of Novel and Efficient Cellulase Producing Bacterial Isolates from Various Extreme Environments

A set of 300 bacterial strains isolated from various extreme environments were screened for the presence of cellulase activity on CMC agar plates. Phylogenetic analysis of the positive strain, based on 16S rRNA gene sequences indicated that the isolates were clustered within Firmicutes and Actinobac...

Full description

Saved in:
Bibliographic Details
Published in:Bioscience, biotechnology, and biochemistry biotechnology, and biochemistry, 2013, Vol.77 (7), p.1474-1480
Main Authors: PANDEY, Sangeeta, SINGH, Surender, YADAV, Ajar Nath, NAIN, Lata, SAXENA, Anil Kumar
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A set of 300 bacterial strains isolated from various extreme environments were screened for the presence of cellulase activity on CMC agar plates. Phylogenetic analysis of the positive strain, based on 16S rRNA gene sequences indicated that the isolates were clustered within Firmicutes and Actinobacteria. A majority (17) of the isolates were identified as Bacillus, Paenibacillus, and Lysinibacillus sp., and the remaining three were identified as Arthobacter, Rhodococcus, and Bhargavaea cecembensis. Among the 20 positive isolates, 6 were evaluated for the production of cellulases on five different cellulosic substrates. Two isolates, B. cecembensis and Bacillus sp., based on maximum enzyme production on all cellulosic substrates, especially CMC and rice straw, were evaluated in terms of enzyme properties and kinetics. The enzymes of these two isolates are found to be active over broad range of pH and temperature. Such thermostable enzymes facilitate the development of efficient and cost-effective forms of the simultaneous saccharification and fermentation process converting lignocellulosic biomass into biofuels and value-added products.
ISSN:0916-8451
1347-6947
DOI:10.1271/bbb.130121