Loading…
Synergistic effects of predators and trematode parasites on larval green frog (Rana clamitans) survival
Parasites and predators can have complex, nonadditive effects on a shared group of victims, which can have important consequences for population dynamics. In particular, parasites can alter host traits that influence predation risk, and predators can have nonconsumptive effects on prey traits which...
Saved in:
Published in: | Ecology (Durham) 2013-12, Vol.94 (12), p.2697-2708 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Parasites and predators can have complex, nonadditive effects on a shared group of victims, which can have important consequences for population dynamics. In particular, parasites can alter host traits that influence predation risk, and predators can have nonconsumptive effects on prey traits which influence susceptibility (i.e., infection intensity and tolerance) to parasites. Here, we examined the combined effects of trematode parasites (Digenea: Echinostomatidae) and odonate (
Anax
) predators on the survival of larval green frogs (
Rana clamitans
). First, in a large-scale mesocosm experiment, we manipulated the presence or absence of parasites in combination with the presence of no predator, caged predators, or free predators, and measured survival, traits, and infection. Parasites, caged predators, and free predators decreased survival, and we found a strong negative synergistic effect of parasites in combination with free predators on survival. Importantly, we then examined the potential mechanisms that explain the observed synergistic effect of parasites and predators in a series of follow-up experiments. Results of the follow-up experiments suggest that increased predation susceptibility due to elevated activity levels in the presence of free-swimming parasite infective stages (i.e., an avoidance response) is the most likely mechanism responsible for the observed synergism. These results suggest a potential trade-off in susceptibility to parasites and predators, which can drive nonadditive effects that may have important consequences for natural enemy interactions in natural populations and amphibian conservation. |
---|---|
ISSN: | 0012-9658 1939-9170 |
DOI: | 10.1890/13-0396.1 |