Loading…
Improved accuracy of anticoagulant dose prediction using a pharmacogenetic and artificial neural network-based method
Background The unpredictability of acenocoumarol dose needed to achieve target blood thinning level remains a challenge. We aimed to apply and compare a pharmacogenetic least-squares model (LSM) and artificial neural network (ANN) models for predictions of acenocoumarol dosing. Methods LSM and ANN m...
Saved in:
Published in: | European journal of clinical pharmacology 2014-03, Vol.70 (3), p.265-273 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c402t-5248b333bad8713553aa7630e52a056f06c621355fe2b7a4a31437a198ed64cd3 |
---|---|
cites | cdi_FETCH-LOGICAL-c402t-5248b333bad8713553aa7630e52a056f06c621355fe2b7a4a31437a198ed64cd3 |
container_end_page | 273 |
container_issue | 3 |
container_start_page | 265 |
container_title | European journal of clinical pharmacology |
container_volume | 70 |
creator | Isma’eel, Hussain A. Sakr, George E. Habib, Robert H. Almedawar, Mohamad Musbah Zgheib, Nathalie K. Elhajj, Imad H. |
description | Background
The unpredictability of acenocoumarol dose needed to achieve target blood thinning level remains a challenge. We aimed to apply and compare a pharmacogenetic least-squares model (LSM) and artificial neural network (ANN) models for predictions of acenocoumarol dosing.
Methods
LSM and ANN models were used to analyze previously collected data on 174 participants (mean age: 67.45 SD 13.49 years) on acenocoumarol maintenance therapy. The models were based on demographics, lifestyle habits, concomitant diseases, medication intake, target INR, and genotyping results for CYP2C9 and VKORC1. LSM versus ANN performance comparisons were done by two methods: by randomly splitting the data as 50 % derivation and 50 % validation cohort followed by a bootstrap of 200 iterations, and by a 10-fold leave-one-out cross-validation technique.
Results
The ANN-based pharmacogenetic model provided higher accuracy and larger R value than all other LSM-based models. The accuracy percentage improvement ranged between 5 % and 24 % for the derivation cohort and between 12 % and 25 % for the validation cohort. The increase in R value ranged between 6 % and 31 % for the derivation cohort and between 2 % and 31 % for the validation cohort. ANN increased the percentage of accurately dosed subjects (mean absolute error ≤1 mg/week) by 14.1 %, reduced the percentage of mis-dosed subjects (mean absolute error 2-3 mg/week) by 7.04 %, and reduced the percentage of grossly mis-dosed subjects (mean absolute error ≥4 mg/week) by 24 %.
Conclusions
ANN-based pharmacogenetic guidance of acenocoumarol dosing reduces the error in dosing to achieve target INR. These results need to be ascertained in a prospective study. |
doi_str_mv | 10.1007/s00228-013-1617-2 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1496873628</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3214476931</sourcerecordid><originalsourceid>FETCH-LOGICAL-c402t-5248b333bad8713553aa7630e52a056f06c621355fe2b7a4a31437a198ed64cd3</originalsourceid><addsrcrecordid>eNp1kU9P3DAQxa0KVJaFD9BLZQn16DL-Ezs5VisKKyH1Amdr4jiL6Sbe2gkV375e7dJy6Wks-zfvzTwT8onDVw5grjOAEDUDLhnX3DDxgSy4koJxUPyELAAkZ7oxcEbOc34G4FUD8iM5E0o0Riq1IPN62KX44juKzs0J3SuNPcVxCi7iZt6WE-1i9nSXfBfcFOJI5xzGDUW6e8I0oIsbP_rCl66ikqbQBxdwS0df9PZl-h3TT9ZiLi6Dn55id0FOe9xmf3msS_L4_eZhdcfuf9yuV9_umVMgJlYJVbdSyha72nBZVRLRaAm-EgiV7kE7Lfb3vRetQYWybG-QN7XvtHKdXJKrg27Z8dfs82Sf45zGYmm5anRtpBZ1ofiBcinmnHxvdykMmF4tB7sP2h6CtiVouw_aitLz-ag8t4Pv_na8JVuAL0cAs8Ntn3B0If_j6ooLUz5oScSBy-Vp3Pj0bsT_uv8BT7GWMg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1496873628</pqid></control><display><type>article</type><title>Improved accuracy of anticoagulant dose prediction using a pharmacogenetic and artificial neural network-based method</title><source>Springer Link</source><creator>Isma’eel, Hussain A. ; Sakr, George E. ; Habib, Robert H. ; Almedawar, Mohamad Musbah ; Zgheib, Nathalie K. ; Elhajj, Imad H.</creator><creatorcontrib>Isma’eel, Hussain A. ; Sakr, George E. ; Habib, Robert H. ; Almedawar, Mohamad Musbah ; Zgheib, Nathalie K. ; Elhajj, Imad H.</creatorcontrib><description>Background
The unpredictability of acenocoumarol dose needed to achieve target blood thinning level remains a challenge. We aimed to apply and compare a pharmacogenetic least-squares model (LSM) and artificial neural network (ANN) models for predictions of acenocoumarol dosing.
Methods
LSM and ANN models were used to analyze previously collected data on 174 participants (mean age: 67.45 SD 13.49 years) on acenocoumarol maintenance therapy. The models were based on demographics, lifestyle habits, concomitant diseases, medication intake, target INR, and genotyping results for CYP2C9 and VKORC1. LSM versus ANN performance comparisons were done by two methods: by randomly splitting the data as 50 % derivation and 50 % validation cohort followed by a bootstrap of 200 iterations, and by a 10-fold leave-one-out cross-validation technique.
Results
The ANN-based pharmacogenetic model provided higher accuracy and larger R value than all other LSM-based models. The accuracy percentage improvement ranged between 5 % and 24 % for the derivation cohort and between 12 % and 25 % for the validation cohort. The increase in R value ranged between 6 % and 31 % for the derivation cohort and between 2 % and 31 % for the validation cohort. ANN increased the percentage of accurately dosed subjects (mean absolute error ≤1 mg/week) by 14.1 %, reduced the percentage of mis-dosed subjects (mean absolute error 2-3 mg/week) by 7.04 %, and reduced the percentage of grossly mis-dosed subjects (mean absolute error ≥4 mg/week) by 24 %.
Conclusions
ANN-based pharmacogenetic guidance of acenocoumarol dosing reduces the error in dosing to achieve target INR. These results need to be ascertained in a prospective study.</description><identifier>ISSN: 0031-6970</identifier><identifier>EISSN: 1432-1041</identifier><identifier>DOI: 10.1007/s00228-013-1617-2</identifier><identifier>PMID: 24297344</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Acenocoumarol - administration & dosage ; Acenocoumarol - pharmacology ; Aged ; Aged, 80 and over ; Anticoagulants ; Anticoagulants - administration & dosage ; Anticoagulants - pharmacology ; Biological and medical sciences ; Biomedical and Life Sciences ; Biomedicine ; Dose-Response Relationship, Drug ; Drug dosages ; Female ; Genetics ; Genotype ; Humans ; International Normalized Ratio ; Least-Squares Analysis ; Male ; Medical sciences ; Middle Aged ; Models, Biological ; Neural Networks (Computer) ; Pharmacogenetics ; Pharmacology ; Pharmacology. Drug treatments ; Pharmacology/Toxicology</subject><ispartof>European journal of clinical pharmacology, 2014-03, Vol.70 (3), p.265-273</ispartof><rights>Springer-Verlag Berlin Heidelberg 2013</rights><rights>2015 INIST-CNRS</rights><rights>Springer-Verlag Berlin Heidelberg 2014</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c402t-5248b333bad8713553aa7630e52a056f06c621355fe2b7a4a31437a198ed64cd3</citedby><cites>FETCH-LOGICAL-c402t-5248b333bad8713553aa7630e52a056f06c621355fe2b7a4a31437a198ed64cd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28512700$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24297344$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Isma’eel, Hussain A.</creatorcontrib><creatorcontrib>Sakr, George E.</creatorcontrib><creatorcontrib>Habib, Robert H.</creatorcontrib><creatorcontrib>Almedawar, Mohamad Musbah</creatorcontrib><creatorcontrib>Zgheib, Nathalie K.</creatorcontrib><creatorcontrib>Elhajj, Imad H.</creatorcontrib><title>Improved accuracy of anticoagulant dose prediction using a pharmacogenetic and artificial neural network-based method</title><title>European journal of clinical pharmacology</title><addtitle>Eur J Clin Pharmacol</addtitle><addtitle>Eur J Clin Pharmacol</addtitle><description>Background
The unpredictability of acenocoumarol dose needed to achieve target blood thinning level remains a challenge. We aimed to apply and compare a pharmacogenetic least-squares model (LSM) and artificial neural network (ANN) models for predictions of acenocoumarol dosing.
Methods
LSM and ANN models were used to analyze previously collected data on 174 participants (mean age: 67.45 SD 13.49 years) on acenocoumarol maintenance therapy. The models were based on demographics, lifestyle habits, concomitant diseases, medication intake, target INR, and genotyping results for CYP2C9 and VKORC1. LSM versus ANN performance comparisons were done by two methods: by randomly splitting the data as 50 % derivation and 50 % validation cohort followed by a bootstrap of 200 iterations, and by a 10-fold leave-one-out cross-validation technique.
Results
The ANN-based pharmacogenetic model provided higher accuracy and larger R value than all other LSM-based models. The accuracy percentage improvement ranged between 5 % and 24 % for the derivation cohort and between 12 % and 25 % for the validation cohort. The increase in R value ranged between 6 % and 31 % for the derivation cohort and between 2 % and 31 % for the validation cohort. ANN increased the percentage of accurately dosed subjects (mean absolute error ≤1 mg/week) by 14.1 %, reduced the percentage of mis-dosed subjects (mean absolute error 2-3 mg/week) by 7.04 %, and reduced the percentage of grossly mis-dosed subjects (mean absolute error ≥4 mg/week) by 24 %.
Conclusions
ANN-based pharmacogenetic guidance of acenocoumarol dosing reduces the error in dosing to achieve target INR. These results need to be ascertained in a prospective study.</description><subject>Acenocoumarol - administration & dosage</subject><subject>Acenocoumarol - pharmacology</subject><subject>Aged</subject><subject>Aged, 80 and over</subject><subject>Anticoagulants</subject><subject>Anticoagulants - administration & dosage</subject><subject>Anticoagulants - pharmacology</subject><subject>Biological and medical sciences</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Dose-Response Relationship, Drug</subject><subject>Drug dosages</subject><subject>Female</subject><subject>Genetics</subject><subject>Genotype</subject><subject>Humans</subject><subject>International Normalized Ratio</subject><subject>Least-Squares Analysis</subject><subject>Male</subject><subject>Medical sciences</subject><subject>Middle Aged</subject><subject>Models, Biological</subject><subject>Neural Networks (Computer)</subject><subject>Pharmacogenetics</subject><subject>Pharmacology</subject><subject>Pharmacology. Drug treatments</subject><subject>Pharmacology/Toxicology</subject><issn>0031-6970</issn><issn>1432-1041</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNp1kU9P3DAQxa0KVJaFD9BLZQn16DL-Ezs5VisKKyH1Amdr4jiL6Sbe2gkV375e7dJy6Wks-zfvzTwT8onDVw5grjOAEDUDLhnX3DDxgSy4koJxUPyELAAkZ7oxcEbOc34G4FUD8iM5E0o0Riq1IPN62KX44juKzs0J3SuNPcVxCi7iZt6WE-1i9nSXfBfcFOJI5xzGDUW6e8I0oIsbP_rCl66ikqbQBxdwS0df9PZl-h3TT9ZiLi6Dn55id0FOe9xmf3msS_L4_eZhdcfuf9yuV9_umVMgJlYJVbdSyha72nBZVRLRaAm-EgiV7kE7Lfb3vRetQYWybG-QN7XvtHKdXJKrg27Z8dfs82Sf45zGYmm5anRtpBZ1ofiBcinmnHxvdykMmF4tB7sP2h6CtiVouw_aitLz-ag8t4Pv_na8JVuAL0cAs8Ntn3B0If_j6ooLUz5oScSBy-Vp3Pj0bsT_uv8BT7GWMg</recordid><startdate>20140301</startdate><enddate>20140301</enddate><creator>Isma’eel, Hussain A.</creator><creator>Sakr, George E.</creator><creator>Habib, Robert H.</creator><creator>Almedawar, Mohamad Musbah</creator><creator>Zgheib, Nathalie K.</creator><creator>Elhajj, Imad H.</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><general>Springer Nature B.V</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7RV</scope><scope>7TK</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>H94</scope><scope>K9.</scope><scope>KB0</scope><scope>M0S</scope><scope>M1P</scope><scope>NAPCQ</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope></search><sort><creationdate>20140301</creationdate><title>Improved accuracy of anticoagulant dose prediction using a pharmacogenetic and artificial neural network-based method</title><author>Isma’eel, Hussain A. ; Sakr, George E. ; Habib, Robert H. ; Almedawar, Mohamad Musbah ; Zgheib, Nathalie K. ; Elhajj, Imad H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c402t-5248b333bad8713553aa7630e52a056f06c621355fe2b7a4a31437a198ed64cd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Acenocoumarol - administration & dosage</topic><topic>Acenocoumarol - pharmacology</topic><topic>Aged</topic><topic>Aged, 80 and over</topic><topic>Anticoagulants</topic><topic>Anticoagulants - administration & dosage</topic><topic>Anticoagulants - pharmacology</topic><topic>Biological and medical sciences</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Dose-Response Relationship, Drug</topic><topic>Drug dosages</topic><topic>Female</topic><topic>Genetics</topic><topic>Genotype</topic><topic>Humans</topic><topic>International Normalized Ratio</topic><topic>Least-Squares Analysis</topic><topic>Male</topic><topic>Medical sciences</topic><topic>Middle Aged</topic><topic>Models, Biological</topic><topic>Neural Networks (Computer)</topic><topic>Pharmacogenetics</topic><topic>Pharmacology</topic><topic>Pharmacology. Drug treatments</topic><topic>Pharmacology/Toxicology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Isma’eel, Hussain A.</creatorcontrib><creatorcontrib>Sakr, George E.</creatorcontrib><creatorcontrib>Habib, Robert H.</creatorcontrib><creatorcontrib>Almedawar, Mohamad Musbah</creatorcontrib><creatorcontrib>Zgheib, Nathalie K.</creatorcontrib><creatorcontrib>Elhajj, Imad H.</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Nursing & Allied Health Database</collection><collection>Neurosciences Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health & Medical Collection (Proquest)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Nursing & Allied Health Premium</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>European journal of clinical pharmacology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Isma’eel, Hussain A.</au><au>Sakr, George E.</au><au>Habib, Robert H.</au><au>Almedawar, Mohamad Musbah</au><au>Zgheib, Nathalie K.</au><au>Elhajj, Imad H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Improved accuracy of anticoagulant dose prediction using a pharmacogenetic and artificial neural network-based method</atitle><jtitle>European journal of clinical pharmacology</jtitle><stitle>Eur J Clin Pharmacol</stitle><addtitle>Eur J Clin Pharmacol</addtitle><date>2014-03-01</date><risdate>2014</risdate><volume>70</volume><issue>3</issue><spage>265</spage><epage>273</epage><pages>265-273</pages><issn>0031-6970</issn><eissn>1432-1041</eissn><abstract>Background
The unpredictability of acenocoumarol dose needed to achieve target blood thinning level remains a challenge. We aimed to apply and compare a pharmacogenetic least-squares model (LSM) and artificial neural network (ANN) models for predictions of acenocoumarol dosing.
Methods
LSM and ANN models were used to analyze previously collected data on 174 participants (mean age: 67.45 SD 13.49 years) on acenocoumarol maintenance therapy. The models were based on demographics, lifestyle habits, concomitant diseases, medication intake, target INR, and genotyping results for CYP2C9 and VKORC1. LSM versus ANN performance comparisons were done by two methods: by randomly splitting the data as 50 % derivation and 50 % validation cohort followed by a bootstrap of 200 iterations, and by a 10-fold leave-one-out cross-validation technique.
Results
The ANN-based pharmacogenetic model provided higher accuracy and larger R value than all other LSM-based models. The accuracy percentage improvement ranged between 5 % and 24 % for the derivation cohort and between 12 % and 25 % for the validation cohort. The increase in R value ranged between 6 % and 31 % for the derivation cohort and between 2 % and 31 % for the validation cohort. ANN increased the percentage of accurately dosed subjects (mean absolute error ≤1 mg/week) by 14.1 %, reduced the percentage of mis-dosed subjects (mean absolute error 2-3 mg/week) by 7.04 %, and reduced the percentage of grossly mis-dosed subjects (mean absolute error ≥4 mg/week) by 24 %.
Conclusions
ANN-based pharmacogenetic guidance of acenocoumarol dosing reduces the error in dosing to achieve target INR. These results need to be ascertained in a prospective study.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>24297344</pmid><doi>10.1007/s00228-013-1617-2</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0031-6970 |
ispartof | European journal of clinical pharmacology, 2014-03, Vol.70 (3), p.265-273 |
issn | 0031-6970 1432-1041 |
language | eng |
recordid | cdi_proquest_journals_1496873628 |
source | Springer Link |
subjects | Acenocoumarol - administration & dosage Acenocoumarol - pharmacology Aged Aged, 80 and over Anticoagulants Anticoagulants - administration & dosage Anticoagulants - pharmacology Biological and medical sciences Biomedical and Life Sciences Biomedicine Dose-Response Relationship, Drug Drug dosages Female Genetics Genotype Humans International Normalized Ratio Least-Squares Analysis Male Medical sciences Middle Aged Models, Biological Neural Networks (Computer) Pharmacogenetics Pharmacology Pharmacology. Drug treatments Pharmacology/Toxicology |
title | Improved accuracy of anticoagulant dose prediction using a pharmacogenetic and artificial neural network-based method |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T20%3A59%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Improved%20accuracy%20of%20anticoagulant%20dose%20prediction%20using%20a%20pharmacogenetic%20and%20artificial%20neural%20network-based%20method&rft.jtitle=European%20journal%20of%20clinical%20pharmacology&rft.au=Isma%E2%80%99eel,%20Hussain%20A.&rft.date=2014-03-01&rft.volume=70&rft.issue=3&rft.spage=265&rft.epage=273&rft.pages=265-273&rft.issn=0031-6970&rft.eissn=1432-1041&rft_id=info:doi/10.1007/s00228-013-1617-2&rft_dat=%3Cproquest_cross%3E3214476931%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c402t-5248b333bad8713553aa7630e52a056f06c621355fe2b7a4a31437a198ed64cd3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1496873628&rft_id=info:pmid/24297344&rfr_iscdi=true |