Loading…

Electrostatic plasma instabilities driven by neutral gas flows in the solar chromosphere

We investigate electrostatic plasma instabilities of Farley-Buneman (FB) type driven by quasi-stationary neutral gas flows in the solar chromosphere. The role of these instabilities in the chromosphere is clarified. We find that the destabilizing ion thermal effect is highly reduced by the Coulomb c...

Full description

Saved in:
Bibliographic Details
Published in:Monthly notices of the Royal Astronomical Society 2014-03, Vol.438 (4), p.3568-3576
Main Authors: Gogoberidze, G., Voitenko, Y., Poedts, S., De Keyser, J.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We investigate electrostatic plasma instabilities of Farley-Buneman (FB) type driven by quasi-stationary neutral gas flows in the solar chromosphere. The role of these instabilities in the chromosphere is clarified. We find that the destabilizing ion thermal effect is highly reduced by the Coulomb collisions and can be ignored for the chromospheric FB-type instabilities. In contrast, the destabilizing electron thermal effect is important and causes a significant reduction of the neutral drag velocity triggering the instability. The resulting threshold velocity is found as function of chromospheric height. Our results indicate that the FB-type instabilities are still less efficient in the global chromospheric heating than the Joule dissipation of the currents driving these instabilities. This conclusion does not exclude the possibility that the FB-type instabilities develop in the places where the cross-field currents overcome the threshold value and contribute to the heating locally. Typical length-scales of plasma density fluctuations produced by these instabilities are determined by the wavelengths of unstable modes, which are in the range 10-102 cm in the lower chromosphere and 102-103 cm in the upper chromosphere. These results suggest that the decimetric radio waves undergoing scattering (scintillations) by these plasma irregularities can serve as a tool for remote probing of the solar chromosphere at different heights.
ISSN:0035-8711
1365-2966
DOI:10.1093/mnras/stt2469