Loading…

Epitaxial Growth and Characterization of Self-Doping } Multi-Quantum Well Materials

This paper presents self-doping Si 1-x Ge x /Si multiquantum wells (MQWs) with35 nm buffer layers where self-doping occurs to allow free carriers in the quantum well. The film grown through ultra-high vacuum chemical vapor deposition method can easily achieve a good lattice quality. The crystal latt...

Full description

Saved in:
Bibliographic Details
Published in:Journal of microelectromechanical systems 2014-02, Vol.23 (1), p.213-219
Main Authors: Jiang, Bo, Dong, Tao, Su, Yan, He, Yong, Wang, Kaiying
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c1407-7931145dd835453fa4e4a8feb9af0736cba60c6e66faab699e0199e6fdc467873
cites cdi_FETCH-LOGICAL-c1407-7931145dd835453fa4e4a8feb9af0736cba60c6e66faab699e0199e6fdc467873
container_end_page 219
container_issue 1
container_start_page 213
container_title Journal of microelectromechanical systems
container_volume 23
creator Jiang, Bo
Dong, Tao
Su, Yan
He, Yong
Wang, Kaiying
description This paper presents self-doping Si 1-x Ge x /Si multiquantum wells (MQWs) with35 nm buffer layers where self-doping occurs to allow free carriers in the quantum well. The film grown through ultra-high vacuum chemical vapor deposition method can easily achieve a good lattice quality. The crystal lattice is verified through scanning electron microscopy, X-ray diffraction,and secondary ion mass spectrometry. Unique structures are applied in the Temperature Coefficient of Resistance (TCR) measurement to obtain electrical characteristics of MQWs. The TCR of Si 0.65 Ge 0.35 /Si obtained in the experiment is about-2.5%/K at 20 °C, which meets the requirements of a thermistor. The TCR decreases from 2.5%/K to 1.1%/K as the size of the MQWs increases from 100 μm×100 μm to 400 μm×400 μm. Annealing is necessary for the formation of an ohmic contact between electrodes and high contact layers.
doi_str_mv 10.1109/JMEMS.2013.2269612
format article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_journals_1504621597</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6558494</ieee_id><sourcerecordid>3238360841</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1407-7931145dd835453fa4e4a8feb9af0736cba60c6e66faab699e0199e6fdc467873</originalsourceid><addsrcrecordid>eNo9kE1PwzAMhiMEEmPwB-ASiXNH3CZpc0RjDNAqhAbiGHltwjJ1bUlb8SHx32nZxMWvD35s6yHkHNgEgKmrh3SWLichg2gShlJJCA_ICBSHgIFIDvueiTiIQcTH5KRpNowB54kckeWsdi1-Oizo3Fcf7ZpimdPpGj1mrfHuG1tXlbSydGkKG9xUtSvf6A9Nu6J1wVOHZdtt6aspCpriAGDRnJIj24c52-eYvNzOnqd3weJxfj-9XgQZcNZ_oyIALvI8iQQXkUVuOCbWrBRaFkcyW6FkmTRSWsSVVMow6Iu0ecZlnMTRmFzu9ta-eu9M0-pN1fmyP6lBMC5DEGqYCndTma-axhura--26L80MD3I03_y9CBP7-X10MUOcsaYf0AKkXDFo18tOGrz</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1504621597</pqid></control><display><type>article</type><title>Epitaxial Growth and Characterization of Self-Doping } Multi-Quantum Well Materials</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Jiang, Bo ; Dong, Tao ; Su, Yan ; He, Yong ; Wang, Kaiying</creator><creatorcontrib>Jiang, Bo ; Dong, Tao ; Su, Yan ; He, Yong ; Wang, Kaiying</creatorcontrib><description>This paper presents self-doping Si 1-x Ge x /Si multiquantum wells (MQWs) with35 nm buffer layers where self-doping occurs to allow free carriers in the quantum well. The film grown through ultra-high vacuum chemical vapor deposition method can easily achieve a good lattice quality. The crystal lattice is verified through scanning electron microscopy, X-ray diffraction,and secondary ion mass spectrometry. Unique structures are applied in the Temperature Coefficient of Resistance (TCR) measurement to obtain electrical characteristics of MQWs. The TCR of Si 0.65 Ge 0.35 /Si obtained in the experiment is about-2.5%/K at 20 °C, which meets the requirements of a thermistor. The TCR decreases from 2.5%/K to 1.1%/K as the size of the MQWs increases from 100 μm×100 μm to 400 μm×400 μm. Annealing is necessary for the formation of an ohmic contact between electrodes and high contact layers.</description><identifier>ISSN: 1057-7157</identifier><identifier>EISSN: 1941-0158</identifier><identifier>DOI: 10.1109/JMEMS.2013.2269612</identifier><identifier>CODEN: JMIYET</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Boron ; Crystal growth ; Epitaxial growth ; Lattices ; materials testing ; Microelectronics ; Quantum well devices ; quantum wells ; Scanning electron microscopy ; Silicon ; thin films ; X-ray scattering</subject><ispartof>Journal of microelectromechanical systems, 2014-02, Vol.23 (1), p.213-219</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Feb 2014</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1407-7931145dd835453fa4e4a8feb9af0736cba60c6e66faab699e0199e6fdc467873</citedby><cites>FETCH-LOGICAL-c1407-7931145dd835453fa4e4a8feb9af0736cba60c6e66faab699e0199e6fdc467873</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6558494$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Jiang, Bo</creatorcontrib><creatorcontrib>Dong, Tao</creatorcontrib><creatorcontrib>Su, Yan</creatorcontrib><creatorcontrib>He, Yong</creatorcontrib><creatorcontrib>Wang, Kaiying</creatorcontrib><title>Epitaxial Growth and Characterization of Self-Doping } Multi-Quantum Well Materials</title><title>Journal of microelectromechanical systems</title><addtitle>JMEMS</addtitle><description>This paper presents self-doping Si 1-x Ge x /Si multiquantum wells (MQWs) with35 nm buffer layers where self-doping occurs to allow free carriers in the quantum well. The film grown through ultra-high vacuum chemical vapor deposition method can easily achieve a good lattice quality. The crystal lattice is verified through scanning electron microscopy, X-ray diffraction,and secondary ion mass spectrometry. Unique structures are applied in the Temperature Coefficient of Resistance (TCR) measurement to obtain electrical characteristics of MQWs. The TCR of Si 0.65 Ge 0.35 /Si obtained in the experiment is about-2.5%/K at 20 °C, which meets the requirements of a thermistor. The TCR decreases from 2.5%/K to 1.1%/K as the size of the MQWs increases from 100 μm×100 μm to 400 μm×400 μm. Annealing is necessary for the formation of an ohmic contact between electrodes and high contact layers.</description><subject>Boron</subject><subject>Crystal growth</subject><subject>Epitaxial growth</subject><subject>Lattices</subject><subject>materials testing</subject><subject>Microelectronics</subject><subject>Quantum well devices</subject><subject>quantum wells</subject><subject>Scanning electron microscopy</subject><subject>Silicon</subject><subject>thin films</subject><subject>X-ray scattering</subject><issn>1057-7157</issn><issn>1941-0158</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNo9kE1PwzAMhiMEEmPwB-ASiXNH3CZpc0RjDNAqhAbiGHltwjJ1bUlb8SHx32nZxMWvD35s6yHkHNgEgKmrh3SWLichg2gShlJJCA_ICBSHgIFIDvueiTiIQcTH5KRpNowB54kckeWsdi1-Oizo3Fcf7ZpimdPpGj1mrfHuG1tXlbSydGkKG9xUtSvf6A9Nu6J1wVOHZdtt6aspCpriAGDRnJIj24c52-eYvNzOnqd3weJxfj-9XgQZcNZ_oyIALvI8iQQXkUVuOCbWrBRaFkcyW6FkmTRSWsSVVMow6Iu0ecZlnMTRmFzu9ta-eu9M0-pN1fmyP6lBMC5DEGqYCndTma-axhura--26L80MD3I03_y9CBP7-X10MUOcsaYf0AKkXDFo18tOGrz</recordid><startdate>201402</startdate><enddate>201402</enddate><creator>Jiang, Bo</creator><creator>Dong, Tao</creator><creator>Su, Yan</creator><creator>He, Yong</creator><creator>Wang, Kaiying</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>L7M</scope></search><sort><creationdate>201402</creationdate><title>Epitaxial Growth and Characterization of Self-Doping } Multi-Quantum Well Materials</title><author>Jiang, Bo ; Dong, Tao ; Su, Yan ; He, Yong ; Wang, Kaiying</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1407-7931145dd835453fa4e4a8feb9af0736cba60c6e66faab699e0199e6fdc467873</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Boron</topic><topic>Crystal growth</topic><topic>Epitaxial growth</topic><topic>Lattices</topic><topic>materials testing</topic><topic>Microelectronics</topic><topic>Quantum well devices</topic><topic>quantum wells</topic><topic>Scanning electron microscopy</topic><topic>Silicon</topic><topic>thin films</topic><topic>X-ray scattering</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jiang, Bo</creatorcontrib><creatorcontrib>Dong, Tao</creatorcontrib><creatorcontrib>Su, Yan</creatorcontrib><creatorcontrib>He, Yong</creatorcontrib><creatorcontrib>Wang, Kaiying</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of microelectromechanical systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jiang, Bo</au><au>Dong, Tao</au><au>Su, Yan</au><au>He, Yong</au><au>Wang, Kaiying</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Epitaxial Growth and Characterization of Self-Doping } Multi-Quantum Well Materials</atitle><jtitle>Journal of microelectromechanical systems</jtitle><stitle>JMEMS</stitle><date>2014-02</date><risdate>2014</risdate><volume>23</volume><issue>1</issue><spage>213</spage><epage>219</epage><pages>213-219</pages><issn>1057-7157</issn><eissn>1941-0158</eissn><coden>JMIYET</coden><abstract>This paper presents self-doping Si 1-x Ge x /Si multiquantum wells (MQWs) with35 nm buffer layers where self-doping occurs to allow free carriers in the quantum well. The film grown through ultra-high vacuum chemical vapor deposition method can easily achieve a good lattice quality. The crystal lattice is verified through scanning electron microscopy, X-ray diffraction,and secondary ion mass spectrometry. Unique structures are applied in the Temperature Coefficient of Resistance (TCR) measurement to obtain electrical characteristics of MQWs. The TCR of Si 0.65 Ge 0.35 /Si obtained in the experiment is about-2.5%/K at 20 °C, which meets the requirements of a thermistor. The TCR decreases from 2.5%/K to 1.1%/K as the size of the MQWs increases from 100 μm×100 μm to 400 μm×400 μm. Annealing is necessary for the formation of an ohmic contact between electrodes and high contact layers.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JMEMS.2013.2269612</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1057-7157
ispartof Journal of microelectromechanical systems, 2014-02, Vol.23 (1), p.213-219
issn 1057-7157
1941-0158
language eng
recordid cdi_proquest_journals_1504621597
source IEEE Electronic Library (IEL) Journals
subjects Boron
Crystal growth
Epitaxial growth
Lattices
materials testing
Microelectronics
Quantum well devices
quantum wells
Scanning electron microscopy
Silicon
thin films
X-ray scattering
title Epitaxial Growth and Characterization of Self-Doping } Multi-Quantum Well Materials
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T22%3A18%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Epitaxial%20Growth%20and%20Characterization%20of%20Self-Doping%20%7D%20Multi-Quantum%20Well%20Materials&rft.jtitle=Journal%20of%20microelectromechanical%20systems&rft.au=Jiang,%20Bo&rft.date=2014-02&rft.volume=23&rft.issue=1&rft.spage=213&rft.epage=219&rft.pages=213-219&rft.issn=1057-7157&rft.eissn=1941-0158&rft.coden=JMIYET&rft_id=info:doi/10.1109/JMEMS.2013.2269612&rft_dat=%3Cproquest_ieee_%3E3238360841%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c1407-7931145dd835453fa4e4a8feb9af0736cba60c6e66faab699e0199e6fdc467873%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1504621597&rft_id=info:pmid/&rft_ieee_id=6558494&rfr_iscdi=true