Loading…

Activation of peroxisome proliferator-activated receptor (PPAR)-gamma by 15S-hydroxyeicosatrienoic acid parallels growth suppression of androgen-dependent prostatic adenocarcinoma cells

Although dietary gamma-linolenic acid (GLA) and its 15-lipoxygenase metabolite, 15S-hydroxyeicosatrienoic acid (15S-HETrE), have been reported to exert antiproliferative activities in other systems, their role in prostatic carcinogenesis is unknown. To evolve a possible mechanism for the suppressive...

Full description

Saved in:
Bibliographic Details
Published in:Cancer letters 2003-01, Vol.189 (1), p.17-25
Main Authors: Pham, Hung, Banerjee, Tinku, Nalbandian, Gregory M., Ziboh, Vincent A.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Although dietary gamma-linolenic acid (GLA) and its 15-lipoxygenase metabolite, 15S-hydroxyeicosatrienoic acid (15S-HETrE), have been reported to exert antiproliferative activities in other systems, their role in prostatic carcinogenesis is unknown. To evolve a possible mechanism for the suppressive effect on growth of prostatic cells, we incubated GLA and 15S-HETrE with androgen-dependent prostatic adenocarcinoma cells. 15S-HETrE but not GLA markedly inhibited [ 3H]thymidine uptake in parallel with the upregulation of peroxisome proliferator-activated receptor-gamma expression (a growth modulating nuclear receptor). The data, taken together, suggest that dietary GLA via its in vivo metabolite 15S-HETrE could serve as an endogenous adjunct to attenuate prostatic tumorigenesis.
ISSN:0304-3835
1872-7980
DOI:10.1016/S0304-3835(02)00498-6