Loading…
Meteorological Origin of the Static Crossover Pattern Present in Low-Resolution-Mode CryoSat-2 Data Over Central Antarctica
The most effective way of determining the rate of elevation change of the Earth's large ice sheets using radar altimeters is to examine the difference in the elevation measured on ascending and descending orbits. This crossover difference has a static and time-varying component, and by isolatin...
Saved in:
Published in: | IEEE geoscience and remote sensing letters 2014-07, Vol.11 (7), p.1295-1299 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The most effective way of determining the rate of elevation change of the Earth's large ice sheets using radar altimeters is to examine the difference in the elevation measured on ascending and descending orbits. This crossover difference has a static and time-varying component, and by isolating the time-varying part, one can construct a time series of the ice sheet elevation change. The static component of the crossover difference arises as a result of an anisotropic dependence of the extinction coefficient on the angle between the radar polarization and wind-induced features of the firn. Here, the static crossover difference observed by CryoSat-2 over the Antarctic ice sheet is examined, and a simple model is developed to explain the observed pattern. There is an excellent agreement between the modeled results and the observations, calling into question the results of previous studies of the same phenomenon with different radar altimeters. |
---|---|
ISSN: | 1545-598X 1558-0571 |
DOI: | 10.1109/LGRS.2013.2292821 |