Loading…
Calibration and Motion Control of a Cable-Driven Parallel Manipulator Based Triple-Level Spatial Positioner
This paper deals with the kinematic calibration and motion control of a triple-level spatial positioner consisting of the cable-driven parallel manipulator (CDPM), active gyro stabilizer (AGS), and the Stewart platform. A six-degree-of-freedom laser tracker is employed when calibrating the benchmark...
Saved in:
Published in: | Advances in Mechanical Engineering 2014-01, Vol.6, p.368018 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This paper deals with the kinematic calibration and motion control of a triple-level spatial positioner consisting of the cable-driven parallel manipulator (CDPM), active gyro stabilizer (AGS), and the Stewart platform. A six-degree-of-freedom laser tracker is employed when calibrating the benchmark positions and measuring the real-time position and orientation in motion control, which makes it a straightforward solution to tackle with hierarchical mechatronic system actuated by servomotors with incremental encoders. Then the trajectory planning and motion control of the triple-level robotic spatial positioner are explored to verify the correctness and to what extent the calibration improves the system. This CDPM based spatial positioner has an accuracy of several millimeters though it has a ten-meter workspace. |
---|---|
ISSN: | 1687-8132 1687-8140 1687-8140 1687-8132 |
DOI: | 10.1155/2014/368018 |