Loading…
GEFCom2012: Electric load forecasting and backcasting with semi-parametric models
We sum up the methodology of the team tololo for the Global Energy Forecasting Competition 2012: Load Forecasting. Our strategy consisted of a temporal multi-scale model that combines three components. The first component was a long term trend estimated by means of non-parametric smoothing. The seco...
Saved in:
Published in: | International journal of forecasting 2014-04, Vol.30 (2), p.375-381 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c410t-a57415b8cb667d5bd525abeba5653893aaabdc872c0d066588f2e8c7d671a9a43 |
---|---|
cites | cdi_FETCH-LOGICAL-c410t-a57415b8cb667d5bd525abeba5653893aaabdc872c0d066588f2e8c7d671a9a43 |
container_end_page | 381 |
container_issue | 2 |
container_start_page | 375 |
container_title | International journal of forecasting |
container_volume | 30 |
creator | Nedellec, Raphael Cugliari, Jairo Goude, Yannig |
description | We sum up the methodology of the team tololo for the Global Energy Forecasting Competition 2012: Load Forecasting. Our strategy consisted of a temporal multi-scale model that combines three components. The first component was a long term trend estimated by means of non-parametric smoothing. The second was a medium term component describing the sensitivity of the electricity demand to the temperature at each time step. We use a generalized additive model to fit this component, using calendar information as well. Finally, a short term component models local behaviours. As the factors that drive this component are unknown, we use a random forest model to estimate it. |
doi_str_mv | 10.1016/j.ijforecast.2013.07.004 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1507812551</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0169207013000800</els_id><sourcerecordid>3248066531</sourcerecordid><originalsourceid>FETCH-LOGICAL-c410t-a57415b8cb667d5bd525abeba5653893aaabdc872c0d066588f2e8c7d671a9a43</originalsourceid><addsrcrecordid>eNqFkE1LAzEQhoMoWKv_YcHzrpPsZpN609JWoSCCnsNsktWs-1GTreK_N7UWj56Gged5h3kJSShkFGh51WSuqQdvNYYxY0DzDEQGUByRCZWCpZIBHJNJRGcpAwGn5CyEBgC4oHRCHleL5Xzoosiuk0Vr9eidTtoBTXJIdf1Lgr1JKtRvh_3Tja9JsJ1LN-ixsz9WNxjbhnNyUmMb7MXvnJLn5eJpfpeuH1b385t1qgsKY4pcFJRXUldlKQyvDGccK1shL3kuZzkiVkbHDzQYKEsuZc2s1MKUguIMi3xKLve5Gz-8b20YVTNsfR9PKspBSMo4p5GSe0r7IQRva7XxrkP_pSioXYGqUX8Fql2BCoSKBUb1dq_Gp-yHs14F7WyvrXGRHpUZ3P8h3w05fjg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1507812551</pqid></control><display><type>article</type><title>GEFCom2012: Electric load forecasting and backcasting with semi-parametric models</title><source>ScienceDirect Freedom Collection 2022-2024</source><creator>Nedellec, Raphael ; Cugliari, Jairo ; Goude, Yannig</creator><creatorcontrib>Nedellec, Raphael ; Cugliari, Jairo ; Goude, Yannig</creatorcontrib><description>We sum up the methodology of the team tololo for the Global Energy Forecasting Competition 2012: Load Forecasting. Our strategy consisted of a temporal multi-scale model that combines three components. The first component was a long term trend estimated by means of non-parametric smoothing. The second was a medium term component describing the sensitivity of the electricity demand to the temperature at each time step. We use a generalized additive model to fit this component, using calendar information as well. Finally, a short term component models local behaviours. As the factors that drive this component are unknown, we use a random forest model to estimate it.</description><identifier>ISSN: 0169-2070</identifier><identifier>EISSN: 1872-8200</identifier><identifier>DOI: 10.1016/j.ijforecast.2013.07.004</identifier><identifier>CODEN: IJFOEK</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Demand ; Demand forecasting ; Estimating techniques ; Forecasting competitions ; Mathematical models ; Multivariate time series ; Nonlinear time series ; Parameter estimation ; Power supply ; Regression ; Studies</subject><ispartof>International journal of forecasting, 2014-04, Vol.30 (2), p.375-381</ispartof><rights>2013 International Institute of Forecasters</rights><rights>Copyright Elsevier Sequoia S.A. Apr/Jun 2014</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c410t-a57415b8cb667d5bd525abeba5653893aaabdc872c0d066588f2e8c7d671a9a43</citedby><cites>FETCH-LOGICAL-c410t-a57415b8cb667d5bd525abeba5653893aaabdc872c0d066588f2e8c7d671a9a43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Nedellec, Raphael</creatorcontrib><creatorcontrib>Cugliari, Jairo</creatorcontrib><creatorcontrib>Goude, Yannig</creatorcontrib><title>GEFCom2012: Electric load forecasting and backcasting with semi-parametric models</title><title>International journal of forecasting</title><description>We sum up the methodology of the team tololo for the Global Energy Forecasting Competition 2012: Load Forecasting. Our strategy consisted of a temporal multi-scale model that combines three components. The first component was a long term trend estimated by means of non-parametric smoothing. The second was a medium term component describing the sensitivity of the electricity demand to the temperature at each time step. We use a generalized additive model to fit this component, using calendar information as well. Finally, a short term component models local behaviours. As the factors that drive this component are unknown, we use a random forest model to estimate it.</description><subject>Demand</subject><subject>Demand forecasting</subject><subject>Estimating techniques</subject><subject>Forecasting competitions</subject><subject>Mathematical models</subject><subject>Multivariate time series</subject><subject>Nonlinear time series</subject><subject>Parameter estimation</subject><subject>Power supply</subject><subject>Regression</subject><subject>Studies</subject><issn>0169-2070</issn><issn>1872-8200</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqFkE1LAzEQhoMoWKv_YcHzrpPsZpN609JWoSCCnsNsktWs-1GTreK_N7UWj56Gged5h3kJSShkFGh51WSuqQdvNYYxY0DzDEQGUByRCZWCpZIBHJNJRGcpAwGn5CyEBgC4oHRCHleL5Xzoosiuk0Vr9eidTtoBTXJIdf1Lgr1JKtRvh_3Tja9JsJ1LN-ixsz9WNxjbhnNyUmMb7MXvnJLn5eJpfpeuH1b385t1qgsKY4pcFJRXUldlKQyvDGccK1shL3kuZzkiVkbHDzQYKEsuZc2s1MKUguIMi3xKLve5Gz-8b20YVTNsfR9PKspBSMo4p5GSe0r7IQRva7XxrkP_pSioXYGqUX8Fql2BCoSKBUb1dq_Gp-yHs14F7WyvrXGRHpUZ3P8h3w05fjg</recordid><startdate>20140401</startdate><enddate>20140401</enddate><creator>Nedellec, Raphael</creator><creator>Cugliari, Jairo</creator><creator>Goude, Yannig</creator><general>Elsevier B.V</general><general>Elsevier Sequoia S.A</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20140401</creationdate><title>GEFCom2012: Electric load forecasting and backcasting with semi-parametric models</title><author>Nedellec, Raphael ; Cugliari, Jairo ; Goude, Yannig</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c410t-a57415b8cb667d5bd525abeba5653893aaabdc872c0d066588f2e8c7d671a9a43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Demand</topic><topic>Demand forecasting</topic><topic>Estimating techniques</topic><topic>Forecasting competitions</topic><topic>Mathematical models</topic><topic>Multivariate time series</topic><topic>Nonlinear time series</topic><topic>Parameter estimation</topic><topic>Power supply</topic><topic>Regression</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nedellec, Raphael</creatorcontrib><creatorcontrib>Cugliari, Jairo</creatorcontrib><creatorcontrib>Goude, Yannig</creatorcontrib><collection>CrossRef</collection><jtitle>International journal of forecasting</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nedellec, Raphael</au><au>Cugliari, Jairo</au><au>Goude, Yannig</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>GEFCom2012: Electric load forecasting and backcasting with semi-parametric models</atitle><jtitle>International journal of forecasting</jtitle><date>2014-04-01</date><risdate>2014</risdate><volume>30</volume><issue>2</issue><spage>375</spage><epage>381</epage><pages>375-381</pages><issn>0169-2070</issn><eissn>1872-8200</eissn><coden>IJFOEK</coden><abstract>We sum up the methodology of the team tololo for the Global Energy Forecasting Competition 2012: Load Forecasting. Our strategy consisted of a temporal multi-scale model that combines three components. The first component was a long term trend estimated by means of non-parametric smoothing. The second was a medium term component describing the sensitivity of the electricity demand to the temperature at each time step. We use a generalized additive model to fit this component, using calendar information as well. Finally, a short term component models local behaviours. As the factors that drive this component are unknown, we use a random forest model to estimate it.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.ijforecast.2013.07.004</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0169-2070 |
ispartof | International journal of forecasting, 2014-04, Vol.30 (2), p.375-381 |
issn | 0169-2070 1872-8200 |
language | eng |
recordid | cdi_proquest_journals_1507812551 |
source | ScienceDirect Freedom Collection 2022-2024 |
subjects | Demand Demand forecasting Estimating techniques Forecasting competitions Mathematical models Multivariate time series Nonlinear time series Parameter estimation Power supply Regression Studies |
title | GEFCom2012: Electric load forecasting and backcasting with semi-parametric models |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T13%3A09%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=GEFCom2012:%20Electric%20load%20forecasting%20and%20backcasting%20with%20semi-parametric%20models&rft.jtitle=International%20journal%20of%20forecasting&rft.au=Nedellec,%20Raphael&rft.date=2014-04-01&rft.volume=30&rft.issue=2&rft.spage=375&rft.epage=381&rft.pages=375-381&rft.issn=0169-2070&rft.eissn=1872-8200&rft.coden=IJFOEK&rft_id=info:doi/10.1016/j.ijforecast.2013.07.004&rft_dat=%3Cproquest_cross%3E3248066531%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c410t-a57415b8cb667d5bd525abeba5653893aaabdc872c0d066588f2e8c7d671a9a43%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1507812551&rft_id=info:pmid/&rfr_iscdi=true |