Loading…

Sequential breakdown of 3-phosphorylated phosphoinositides is essential for the completion of macropinocytosis

Macropinocytosis is a highly conserved endocytic process by which extracellular fluid and solutes are internalized into cells. Macropinocytosis starts with the formation of membrane ruffles at the plasma membrane and ends with their closure. The transient and sequential emergence of phosphoinositide...

Full description

Saved in:
Bibliographic Details
Published in:Proceedings of the National Academy of Sciences - PNAS 2014-03, Vol.111 (11), p.3911-3911
Main Authors: Maekawa, Masashi, Terasaka, Shimpei, Mochizuki, Yasuhiro, Kawai, Katsuhisa, Ikeda, Yuka, Araki, Nobukazu, Skolnik, Edward Y., Taguchi, Tomohiko, Arai, Hiroyuki
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Macropinocytosis is a highly conserved endocytic process by which extracellular fluid and solutes are internalized into cells. Macropinocytosis starts with the formation of membrane ruffles at the plasma membrane and ends with their closure. The transient and sequential emergence of phosphoinositides PI(3,4,5)P3 and PI(3,4)P2 in the membrane ruffles is essential for macropinocytosis. By making use of information in the Caenorhabditis elegans mutants defective in fluid-phase endocytosis, we found that mammalian phosphoinositide phosphatase MTMR6 that dephosphorylates PI(3)P to PI, and its binding partner MTMR9, are required for macropinocytosis. INPP4B, which dephosphorylates PI(3,4)P2 to PI(3)P, was also found to be essential for macropinocytosis. These phosphatases operate after the formation of membrane ruffles to complete macropinocytosis. Finally, we showed that KCa3.1, a Ca(2+)-activated K(+) channel that is activated by PI(3)P, is required for macropinocytosis. We propose that the sequential breakdown of PI(3,4,5)P3 → PI(3,4)P2 → PI(3)P → PI controls macropinocytosis through specific effectors of the intermediate phosphoinositides.
ISSN:0027-8424
1091-6490
DOI:10.1073/pnas.1311029111