Loading…
Sparsity-Aware Sensor Selection: Centralized and Distributed Algorithms
The selection of the minimum number of sensors within a network to satisfy a certain estimation performance metric is an interesting problem with a plethora of applications. We explore the sparsity embedded within the problem and propose a relaxed sparsity-aware sensor selection approach which is eq...
Saved in:
Published in: | IEEE signal processing letters 2014-02, Vol.21 (2), p.217-220 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The selection of the minimum number of sensors within a network to satisfy a certain estimation performance metric is an interesting problem with a plethora of applications. We explore the sparsity embedded within the problem and propose a relaxed sparsity-aware sensor selection approach which is equivalent to the unrelaxed problem under certain conditions. We also present a reasonably low-complexity and elegant distributed version of the centralized problem with convergence guarantees such that each sensor can decide itself whether it should contribute to the estimation or not. Our simulation results corroborate our claims and illustrate a promising performance for the proposed centralized and distributed algorithms. |
---|---|
ISSN: | 1070-9908 1558-2361 |
DOI: | 10.1109/LSP.2013.2297419 |