Loading…

Automated Manipulation of Biological Cells Using Gripper Formations Controlled By Optical Tweezers

The capability of noninvasive and precise micromanipulation of sensitive, living cells is necessary for understanding their underlying biological processes. Optical tweezers (OT) is an effective tool that uses highly focused laser beams for accurate manipulation of cells and dielectric beads at micr...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on automation science and engineering 2014-04, Vol.11 (2), p.338-347
Main Authors: Chowdhury, Sagar, Thakur, Atul, Svec, Petr, Chenlu Wang, Losert, Wolfgang, Gupta, Satyandra K.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The capability of noninvasive and precise micromanipulation of sensitive, living cells is necessary for understanding their underlying biological processes. Optical tweezers (OT) is an effective tool that uses highly focused laser beams for accurate manipulation of cells and dielectric beads at microscale. However, direct exposure of the laser beams on the cells can negatively influence their behavior or even cause a photo-damage. In this paper, we introduce a control and planning approach for automated, indirect manipulation of cells using silica beads arranged into gripper formations. The developed approach employs path planning and feedback control for efficient, collision-free transport of a cell between two specified locations. The planning component of the approach computes a path that explicitly respects the nonholonomic constraints of the gripper formations. The feedback control component ensures stable tracking of the path by manipulating the cell using a set of predefined maneuvers. We demonstrate the effectiveness of the approach by transporting a yeast cell using four different types of gripper formations along collision-free paths on our OT setup. We analyzed the performance of the proposed gripper formations with respect to their maximum transport speeds and the laser intensity experienced by the cell that depends on the laser power used.
ISSN:1545-5955
1558-3783
DOI:10.1109/TASE.2013.2272512