Loading…
FUZZY RIPENING MANGO INDEX USING RGB COLOUR SENSOR MODEL
Currently, the mango ripeness classification is determined manually by human graders according to a particular procedure. This method is inconsistent and subjective in nature because each grader has different techniques. Thus, it affects the quantity and quality of the mango fruit that can be market...
Saved in:
Published in: | Researchers world - journal of arts science and commerce 2014-04, Vol.5 (2), p.1 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | 2 |
container_start_page | 1 |
container_title | Researchers world - journal of arts science and commerce |
container_volume | 5 |
creator | Mansor, Ab Razak Othman, Mahmod Bakar, Mohd Nazari Abu Ahmad, Khairul Adilah Razak, Tajul Rosli |
description | Currently, the mango ripeness classification is determined manually by human graders according to a particular procedure. This method is inconsistent and subjective in nature because each grader has different techniques. Thus, it affects the quantity and quality of the mango fruit that can be marketed. In this project, a new model for classifying mango fruit is developed using the fuzzy logic RGB sensor colour model build in the MATLAB software. The grading system was programmed with a colour sensor to analyze the mango fruit ripening index. The decision making process uses fuzzy logic to train the data and also to classify or categorize the mango fruit. The model developed is able to distinguish or separate the three different classes of mango fruit. The proposed model is able to distinguish the three different classes of mango fruit automatically with more than 85% accuracy. [PUBLICATION ABSTRACT] |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_1521732549</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3296082751</sourcerecordid><originalsourceid>FETCH-proquest_journals_15217325493</originalsourceid><addsrcrecordid>eNpjYeA0MjKy1DUxszDjYOAtLs4yAAJTQxMjQ0tOBgu30KioSIUgzwBXP08_dwVfRz93fwVPPxfXCIXQYJBIkLuTgrO_j39okEKwq1-wf5CCr7-Lqw8PA2taYk5xKi-U5mZQdnMNcfbQLSjKLyxNLS6Jz8ovLcoDSsUbmhoZmhsbmZpYGhOnCgCvKTCB</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1521732549</pqid></control><display><type>article</type><title>FUZZY RIPENING MANGO INDEX USING RGB COLOUR SENSOR MODEL</title><source>International Bibliography of the Social Sciences (IBSS)</source><source>Social Science Premium Collection (Proquest) (PQ_SDU_P3)</source><creator>Mansor, Ab Razak ; Othman, Mahmod ; Bakar, Mohd Nazari Abu ; Ahmad, Khairul Adilah ; Razak, Tajul Rosli</creator><creatorcontrib>Mansor, Ab Razak ; Othman, Mahmod ; Bakar, Mohd Nazari Abu ; Ahmad, Khairul Adilah ; Razak, Tajul Rosli</creatorcontrib><description>Currently, the mango ripeness classification is determined manually by human graders according to a particular procedure. This method is inconsistent and subjective in nature because each grader has different techniques. Thus, it affects the quantity and quality of the mango fruit that can be marketed. In this project, a new model for classifying mango fruit is developed using the fuzzy logic RGB sensor colour model build in the MATLAB software. The grading system was programmed with a colour sensor to analyze the mango fruit ripening index. The decision making process uses fuzzy logic to train the data and also to classify or categorize the mango fruit. The model developed is able to distinguish or separate the three different classes of mango fruit. The proposed model is able to distinguish the three different classes of mango fruit automatically with more than 85% accuracy. [PUBLICATION ABSTRACT]</description><identifier>ISSN: 2229-4686</identifier><language>eng</language><publisher>Malegaon: Educational Research Multimedia & Publications</publisher><subject>Accuracy ; Classification ; Exports ; Fruits ; Fuzzy logic ; Fuzzy sets ; Vision systems</subject><ispartof>Researchers world - journal of arts science and commerce, 2014-04, Vol.5 (2), p.1</ispartof><rights>Copyright Educational Research Multimedia & Publications Apr 2014</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1521732549/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1521732549?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,776,780,12827,21374,33202,33590,43712,73968</link.rule.ids></links><search><creatorcontrib>Mansor, Ab Razak</creatorcontrib><creatorcontrib>Othman, Mahmod</creatorcontrib><creatorcontrib>Bakar, Mohd Nazari Abu</creatorcontrib><creatorcontrib>Ahmad, Khairul Adilah</creatorcontrib><creatorcontrib>Razak, Tajul Rosli</creatorcontrib><title>FUZZY RIPENING MANGO INDEX USING RGB COLOUR SENSOR MODEL</title><title>Researchers world - journal of arts science and commerce</title><description>Currently, the mango ripeness classification is determined manually by human graders according to a particular procedure. This method is inconsistent and subjective in nature because each grader has different techniques. Thus, it affects the quantity and quality of the mango fruit that can be marketed. In this project, a new model for classifying mango fruit is developed using the fuzzy logic RGB sensor colour model build in the MATLAB software. The grading system was programmed with a colour sensor to analyze the mango fruit ripening index. The decision making process uses fuzzy logic to train the data and also to classify or categorize the mango fruit. The model developed is able to distinguish or separate the three different classes of mango fruit. The proposed model is able to distinguish the three different classes of mango fruit automatically with more than 85% accuracy. [PUBLICATION ABSTRACT]</description><subject>Accuracy</subject><subject>Classification</subject><subject>Exports</subject><subject>Fruits</subject><subject>Fuzzy logic</subject><subject>Fuzzy sets</subject><subject>Vision systems</subject><issn>2229-4686</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>8BJ</sourceid><sourceid>ALSLI</sourceid><sourceid>M2R</sourceid><recordid>eNpjYeA0MjKy1DUxszDjYOAtLs4yAAJTQxMjQ0tOBgu30KioSIUgzwBXP08_dwVfRz93fwVPPxfXCIXQYJBIkLuTgrO_j39okEKwq1-wf5CCr7-Lqw8PA2taYk5xKi-U5mZQdnMNcfbQLSjKLyxNLS6Jz8ovLcoDSsUbmhoZmhsbmZpYGhOnCgCvKTCB</recordid><startdate>20140401</startdate><enddate>20140401</enddate><creator>Mansor, Ab Razak</creator><creator>Othman, Mahmod</creator><creator>Bakar, Mohd Nazari Abu</creator><creator>Ahmad, Khairul Adilah</creator><creator>Razak, Tajul Rosli</creator><general>Educational Research Multimedia & Publications</general><scope>0-V</scope><scope>4U-</scope><scope>7XB</scope><scope>8BJ</scope><scope>AFKRA</scope><scope>ALSLI</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FQK</scope><scope>GNUQQ</scope><scope>JBE</scope><scope>M2R</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope></search><sort><creationdate>20140401</creationdate><title>FUZZY RIPENING MANGO INDEX USING RGB COLOUR SENSOR MODEL</title><author>Mansor, Ab Razak ; Othman, Mahmod ; Bakar, Mohd Nazari Abu ; Ahmad, Khairul Adilah ; Razak, Tajul Rosli</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_15217325493</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Accuracy</topic><topic>Classification</topic><topic>Exports</topic><topic>Fruits</topic><topic>Fuzzy logic</topic><topic>Fuzzy sets</topic><topic>Vision systems</topic><toplevel>online_resources</toplevel><creatorcontrib>Mansor, Ab Razak</creatorcontrib><creatorcontrib>Othman, Mahmod</creatorcontrib><creatorcontrib>Bakar, Mohd Nazari Abu</creatorcontrib><creatorcontrib>Ahmad, Khairul Adilah</creatorcontrib><creatorcontrib>Razak, Tajul Rosli</creatorcontrib><collection>ProQuest Social Sciences Premium Collection【Remote access available】</collection><collection>University Readers</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>ProQuest Central</collection><collection>Social Science Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>International Bibliography of the Social Sciences</collection><collection>ProQuest Central Student</collection><collection>International Bibliography of the Social Sciences</collection><collection>ProQuest Social Science Journals</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><jtitle>Researchers world - journal of arts science and commerce</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mansor, Ab Razak</au><au>Othman, Mahmod</au><au>Bakar, Mohd Nazari Abu</au><au>Ahmad, Khairul Adilah</au><au>Razak, Tajul Rosli</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>FUZZY RIPENING MANGO INDEX USING RGB COLOUR SENSOR MODEL</atitle><jtitle>Researchers world - journal of arts science and commerce</jtitle><date>2014-04-01</date><risdate>2014</risdate><volume>5</volume><issue>2</issue><spage>1</spage><pages>1-</pages><issn>2229-4686</issn><abstract>Currently, the mango ripeness classification is determined manually by human graders according to a particular procedure. This method is inconsistent and subjective in nature because each grader has different techniques. Thus, it affects the quantity and quality of the mango fruit that can be marketed. In this project, a new model for classifying mango fruit is developed using the fuzzy logic RGB sensor colour model build in the MATLAB software. The grading system was programmed with a colour sensor to analyze the mango fruit ripening index. The decision making process uses fuzzy logic to train the data and also to classify or categorize the mango fruit. The model developed is able to distinguish or separate the three different classes of mango fruit. The proposed model is able to distinguish the three different classes of mango fruit automatically with more than 85% accuracy. [PUBLICATION ABSTRACT]</abstract><cop>Malegaon</cop><pub>Educational Research Multimedia & Publications</pub></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2229-4686 |
ispartof | Researchers world - journal of arts science and commerce, 2014-04, Vol.5 (2), p.1 |
issn | 2229-4686 |
language | eng |
recordid | cdi_proquest_journals_1521732549 |
source | International Bibliography of the Social Sciences (IBSS); Social Science Premium Collection (Proquest) (PQ_SDU_P3) |
subjects | Accuracy Classification Exports Fruits Fuzzy logic Fuzzy sets Vision systems |
title | FUZZY RIPENING MANGO INDEX USING RGB COLOUR SENSOR MODEL |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T14%3A12%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=FUZZY%20RIPENING%20MANGO%20INDEX%20USING%20RGB%20COLOUR%20SENSOR%20MODEL&rft.jtitle=Researchers%20world%20-%20journal%20of%20arts%20science%20and%20commerce&rft.au=Mansor,%20Ab%20Razak&rft.date=2014-04-01&rft.volume=5&rft.issue=2&rft.spage=1&rft.pages=1-&rft.issn=2229-4686&rft_id=info:doi/&rft_dat=%3Cproquest%3E3296082751%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_15217325493%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1521732549&rft_id=info:pmid/&rfr_iscdi=true |