Loading…

Preparation and Photocatalytic Properties of Sr2−xBaxTa3O10−yNz Nanosheets

Sr2−xBaxTa3O10−yNz (x = 0.0, 0.5, 1.0) nanosheets were prepared by exfoliating layered perovskite compounds (CsSr2−xBaxTa3O10−yNz). The Sr1.5Ba0.5Ta3O9.7N0.2 nanosheet showed the highest photocatalytic activity for H2 production from the water/methanol system among the Sr2−xBaxTa3O9.7N0.2 nanosheets...

Full description

Saved in:
Bibliographic Details
Published in:Catalysts 2013-01, Vol.3 (1), p.1-10
Main Authors: Ida, Shintaro, Okamoto, Yohei, Hagiwara, Hidehisa, Ishihara, Tatsumi
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Sr2−xBaxTa3O10−yNz (x = 0.0, 0.5, 1.0) nanosheets were prepared by exfoliating layered perovskite compounds (CsSr2−xBaxTa3O10−yNz). The Sr1.5Ba0.5Ta3O9.7N0.2 nanosheet showed the highest photocatalytic activity for H2 production from the water/methanol system among the Sr2−xBaxTa3O9.7N0.2 nanosheets prepared. In addition, Rh-loaded Sr1.5Ba0.5Ta3O9.6N0.3 nanosheet showed the photocatalytic activity for oxygen and hydrogen production from water. The ratio of hydrogen to oxygen evolved was around two. These results indicate that the Rh-loaded Sr1.5Ba0.5Ta3O9.6N0.3 nanosheet is a potential catalyst for photocatalytic water splitting.
ISSN:2073-4344
2073-4344
DOI:10.3390/catal3010001