Loading…

Properties of Soy Protein Produced by Countercurrent, Two-Stage, Enzyme-Assisted Aqueous Extraction

Enzyme-assisted aqueous extraction processing (EAEP) is an environmentally friendly technology where oil and protein can be simultaneously extracted from soybeans by using water and protease. Countercurrent, two-stage, EAEP was performed at a 1:6 solids-to-liquid ratio, 50 °C, pH 9.0, and 120 rpm fo...

Full description

Saved in:
Bibliographic Details
Published in:Journal of the American Oil Chemists' Society 2014-06, Vol.91 (6), p.1077-1085
Main Authors: de Almeida, N. M., de Moura Bell, J. M. L. N., Johnson, L. A.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Enzyme-assisted aqueous extraction processing (EAEP) is an environmentally friendly technology where oil and protein can be simultaneously extracted from soybeans by using water and protease. Countercurrent, two-stage, EAEP was performed at a 1:6 solids-to-liquid ratio, 50 °C, pH 9.0, and 120 rpm for 1 h to extract oil and protein from soybeans. The skim fractions were produced by three methods: (1) by treating with 0.5 % protease (wt/g extruded flakes) in both extraction stages; (2) by treating with 0.5 % protease in the 2nd extraction stage only; and (3) by using the same two-stage extraction procedure without enzymes in either extraction stages. Countercurrent, two-stage, protein extraction of air-desolventized, hexane-defatted, soybean flakes was used as a control. Solubility profiles of the skim proteins were the typical U-shaped curves with the lowest solubility at the isoelectric point of soy protein (pH 4.5). The use of the enzyme slightly improved solubility of the recovered protein with hydrolyzed proteins having higher solubilities at acid pH. Emulsification and foaming properties were generally reduced by the use of enzyme during EAEP extractions. The skims produced with protease-extracted (hydrolyzed) proteins gave gels with lower hardness than did unhydrolyzed proteins when heated at 80 °C. The essential amino acid compositions and protein digestibilities were not adversely affected by either extrusion or extraction treatments.
ISSN:0003-021X
1558-9331
DOI:10.1007/s11746-014-2436-z